→目 次	

序章 過渡現象とその学び方	1
 0.1 過渡現象とは ·····	1
0.2 本書の学び方	3
0.3 学習目標	4
1章 本書の概要と過渡現象を学ぶための基礎	5
 1.1 本書の概要 ······	5
1.2 過渡現象を学ぶための基礎	7
1.2.1 過渡現象を解くための微分方程式のたて方 7	
1.2.2 過渡現象解析における微分方程式 10	
1.2.3 微分方程式を解くために必要な初期条件 11	
1.2.4 1 階および 2 階の微分方程式の解き方 15	
2章 直流電源に接続した電気回路の過渡現象	25
2.1 直流電源に接続した RC 回路の過渡現象 \cdots	25
2.1.1 直流 RC 回路の過渡現象 (充電の場合) 25	
2.1.2 コンデンサ C に加わる電圧 V_C と蓄えられるエネルギー W_C 2	!7
2.1.3 時定数について 29	
2.1.4 直流 RC 回路の過渡現象 (放電の場合) 31	
2.1.5 のこぎり波 33	
2.2 直流電源に接続した RL 回路の過渡現象 \cdots	35
2.2.1 直流 RL 回路の過渡現象 35	
2.2.2 インダクタ L に加わる電圧 V_L と蓄えられるエネルギー W_L 3	7
2.2.3 直流 <i>RL</i> 回路のエネルギーの放電 39	
3章 交流電源に接続した電気回路の過渡現象	42
3.1 交流電源に接続した RC 回路の過渡現象 \cdots	42
3.1.1 交流 <i>RC</i> 同路の過渡現象 42	

3.1.2 コンデンサ C の電圧 V_C 47	
3.1.3 電源電圧の位相が変わった場合の過渡現象 47	
3.2 交流電源に接続した RL 回路の過渡現象 $\cdots\cdots$	50
3.2.1 交流 <i>RL</i> 回路の過渡現象 50	
3.2.2 インダクタ <i>L</i> の電圧 53	
3.3 パルス回路	54
3.3.1 微分回路 54	
3.3.2 積分回路 56	
4章 複エネルギー回路の過渡現象	60
4.1 直流電源に接続した複エネルギー回路の過渡現象 …	60
4.1.1 直流 LC 回路の過渡現象 60	
4.1.2 コンデンサ C とインダクタ L に加わる電圧 63	
4.1.3 LC 自由振動回路の過渡現象 64	
4.1.4 直流 <i>LCR</i> 回路の過渡現象 66	
4.1.5 LCR 回路の自由振動 73	
4.1.6 LCR 自由振動回路の応用 75	
4.1.7 対数減衰率 77	
4.2 交流電源に接続した複エネルギー回路の過渡現象 …	78
4.2.1 交流 <i>LC</i> 回路の過渡現象 78	
4.2.2 交流 <i>LCR</i> 回路の過渡現象 82	
AS A STRA A VENEZUE	0.4
5章 複合回路の過渡現象	94
5.1 並列回路の過渡現象	
5.2 直並列回路の過渡現象	
5.3 3 相回路の過渡現象	
5.4 相互誘導回路の過渡現象	100
	- 405
6章 ラプラス変換とそれを用いた過渡現象解析法	
6.1 ラプラス変換と過渡現象解析法の概要・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
6.2 簡単な関数のラプラス変換と過渡現象の式の導出例	
6.3 ラプラス変換 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	107
6.3.1 ラプラス変換の定義によるラプラス変換 108	

vi		目	次									
	6.3	3.2	ラプラ	ラス変換	の基本的	的性質	とその活	用	112			
6	.4	ラ	プラス	逆変換				• • • •			 	121
	6.4	4.1	ラプラ	ラス逆変	換の概要	Ę	121					
	6.4	4.2	部分分	分数展開	によるき	ラプラ	ス逆変換	ļ	121			
2020200	ni objektualne											
7	章	•	ラプラ	ス変技	奥法に	よる	電気回路	各の	過渡現	象解析	1	34
7	'.1	ラ	プラス	変換法	による)	過渡 現	象解析(の概	要		 	134
7	.2	直	流電源	に接続	した電気	冠回距	の過渡す	見象			 	134
7	'.3	交	流電源	に接続	した電気	范回路	の過渡	見象			 	140
7	.4	電	気回路	の表回	路と裏回	3路					 	150

150

演習問題解答 162

参考文献 · · · · · · · · 179

索 引 … … 180

7.4.1 表回路に対する裏回路の表現

7.4.3 RL 直列回路の裏回路 155

7.4.2 RC 直列回路の裏回路