目 次

9. 角運動量

 § 9.1 中心力の場における運動・・1
 (b) 固有関数・・・・・・・13

 § 9.2 角運動量の交換関係・・・・2
 (c) 固有関数の物理的な意味・16

§ 9.3	同時固有値問題・・・・・4	§ 9.7	スピン ・・・・・・・17								
(a)	角運動量成分の	(a)	スピンの演算子と								
	同時固有値問題・・・・・4		状態ベクトル ・・・・19								
(b)	共立性・・・・・・・5	(b) 4	磁気モーメント ・・・・20								
(c)	中心力場における	§ 9.8	角運動量の合成 ・・・・21								
	角運動量の保存・・・・・5	(a)	2 つの角運動量 ・・・・・21								
§ 9.4	角運動量の大きさとz成分 6	(b)	角運動量の合成 ・・・・21								
§ 9.5	極座標系で書いた演算子・・9	(c)	合成角運動量の								
§ 9.6	軌道角運動量 ・・・・・12		固有状態の構成 ・・・・24								
(a)	固有値 ・・・・・・・12	問題	• • • • • • • • • • • 28								
10 17 7 0 14 14											
	10	フ の #* \	·#-								
	10. 原 ⁻	子の構え	造								
	10. 原	子の構え	告								
§ 10.1		子の構え (c)	告 エネルギー固有値の決定 ・43								
§ 10.1											
•	水素様イオン・・・・・32	(c)	エネルギー固有値の決定 ・43								
(a)	水素様イオン・・・・・32 重心の運動と相対運動・・33 相対運動のハミルトニアン36	(c) (d)	エネルギー固有値の決定 ・43 状態関数 ・・・・・・・46								
(a) (b)	水素様イオン・・・・・32 重心の運動と相対運動・・33 相対運動のハミルトニアン 36	(c) (d) § 10.3	エネルギー固有値の決定 ・43 状態関数 ・・・・・・46 元素の周期律 ・・・・・50								

vi 目 次

11. 近 似 法

§ 11.1	摂動論 ―― 定常状態 ・・61	(c)	遷移確率 · · · · · · · 83						
(a)	基本の考え・・・・・・62	(d)	終状態・・・・・・86						
(b)	摂動方程式・・・・・・63	§ 11.5	変分法・・・・・・87						
§ 11.2	注目する準位に	(a)	基本の考え・・・・・87						
	縮退がない場合・・・・65	(b)	変分法の直接法・・・・88						
(a)	小谷の方法・・・・・・65	(c)	調和振動子の例・・・・89						
(b)	非摂動固有関数による展開 70	(d)	ヘリウム原子における						
§ 11.3	注目する準位に		核電荷の遮蔽・・・・90						
	縮退がある場合・・・・74	§ 11.6	排他律の定式化・・・・94						
§ 11.4	時間発展の摂動論・・・・78	(a)	波動関数の反対称性・・・94						
(a)	相互作用描像・・・・・78	(b)	ヘリウム原子の場合・・・95						
(b)	くりこみ理論・・・・・80	問題	• • • • • • • • • 97						
§ 12.1 § 12.2 (a) (b)	制 乱 ・・・・・・100 時間発展を追う方法 ・・102 箱式量子化 ・・・・・102 遷移確率から微分断面積へ	乱問題 § 12.3 (a) (b)	定常状態をみる方法 ・・108 ボルン近似 ・・・・・108 散乱振幅から微分断面積へ						
(D)	・・・・・・・・・104	問題	• • • • • • • • • • • • • • • • • • • •						
(c)	湯川ポテンシャル ・・・106	I HJ WZ	110						
13. 輻射と物質の相互作用									
§ 13.1	基本量 ・・・・・・116 電磁ポテンシャル ・・・116	(d) § 13.2	ゲージ変換 ・・・・・121 自由空間の電磁場 ・・・123						
(b)	電子のハミルトニアン ・117	(a)	輻射ゲージ ・・・・・123						
(c)	存在確率の保存・・・・120	(b)	モード展開 ・・・・・125						
(-)	14 Profes I is blaid	(~)	. ,,,,,,,						

(c)	電場と磁束密度 ・・	•	•]	127			(a)	1	扁極/	₹ =	Ф	の	光	子(Dţ	次と	ዜ 1	.37
(d)	輻射場の量子化 ・・	•	•	128			(b)	í	扁極/	1 =	Θ	の;	光-	子(ひた	汝上	H 1	.38
(e)	輻射場の状態・・・	•	•	131			(c)	ī	古典記	角と	のな	讨成	7	•	•	•	•]	40
§ 13.3	輻射の放出, 吸収・	•	•	132		§ 1	3.5	7	水素核	美イ	才	ン	•	•	•	•	• 1	41
(a)	輻射の放出 ・・・・	•	•	133			(a)	F	円偏光	ć		•	•	•		•	•]	42
(b)	双極子近似・・・・	•	•	135			(b)	2	2p →	ls (の過	₹移	·	•		•	• 1	44
§ 13.4	等方調和振動子 • •	•	•	136		問	題	į .		•		•	•	•			•]	148
付録:	積分の計算法・・・	•	•		•		•			•			•	•	•	•	•]	150
問題解	答 • • • • • •	•			•					•			•	•	•		•]	155
(I)·	(II)巻総合索引 ・・・	•			•					•			•				•]	195

目

次

vii

「(I)巻」主要目次

- 1. 光の波動性と粒子性
- 2. 原子核と電子
- 3. 過渡期の原子構造論
- 4. 波動力学のはじまり
- 5. 波動関数の物理的意味
- 6. 量子力学の成立
- 7. 井戸型ポテンシャル
- 8. 調和振動子

問題解答