目 次

ま	え	が	ð

第1章	現代の多変量解析とは 1	
1.1	現代流の多変量解析とは2	
	(a) データマイニング:隠れた構造の発見 2	
	(b) テーラーメイド多変量解析:個性・多様化への対応 3	
1.2	カーネル法とはどんなものか4	
	(a) 関数の推定 4	
	(b) 基本の線形モデル 4	
	(c) カーネル法登場 6	
	(d) 正則化:鋭すぎる刃物を鈍らせて使う 9	
1.3	カーネル法の利点と応用分野11	
	(a) カーネル多変量解析の特徴 11	
	(b) カーネル法の応用分野 12	
1.4	カーネル法の種類:問題設定と計算法13	
	(a) 問題設定による分類 13	
	(b) 計算法による分類 16	
第2章 カーネル多変量解析の仕組み 19		
2.1	カーネル関数とは何か:特徴抽出からの導入20	
2.2	正定値性からの導入25	
2.3	確率モデルからの導入30	
	(a) 線形モデルのベイズ推論 30	
	(b) 正規過程からカーネルへ 32	
2.4	汎化能力の評価とモデル選択34	

x ◆ 目	次	
	(a)	クロスバリデーション 35
	(P)	線形モデルの leave-one-out クロスバリデーション 36
	(c)	具体例 36
第3章	i [固有値問題を用いたカーネル多変量解析 41
3.1	カー	- ネル主成分分析 42
	(a)	低次元構造の抽出と情報量 42
	(P)	カーネル主成分分析と固有値問題 43
	(c)	カーネル主成分分析の問題点とデータ依存カーネル 47
3.2	次元	C圧縮とデータ依存カーネルs1
	(a)	次元圧縮とカーネル法の等価性 51
	(P)	ラプラシアン固有マップ法: グラフ上の物理モデルに基づく次元圧縮 52
	(c)	ISOMAP:多様体上の距離に基づく次元圧縮 56
	(d)	局所線形埋め込み法: 線形モデルの貼り合わせによる次元圧縮 60
3.3	クラ	,スタリング ······63
	(a)	カーネル <i>k</i> -平均法 64
	(P)	スペクトラルクラスタリング 65
3.4	判別	分析と正準相関分析 ·····・68
	(a)	カーネル判別分析 69
	(P)	カーネル正準相関分析 73
3.5	カー	- ネル独立成分分析79
	(a)	独立成分分析の概略 80
	(b)	主成分分析による無相関化 81
	(c)	独立性の規準 82
		占計画問題を用いたカーネル多変量解析 85
4.1	サオ	ポートベクトルマシン ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・

	(a)	カーネル最小二乗クラス識別 86
	(P)	サポートベクトルマシン:
		二乗誤差から区分線形誤差へ 87
	(c)	解の条件とスパース性 90
	(d)	双対問題による計算の単純化 94
	(e)	サポートベクトルマシンの幾何的意味: マージン最大化 96
	(f)	サポートベクトルマシンの汎化能力 98
4.2	サオ	ポートベクトル回帰9
	(a)	二乗誤差から <i>ϵ</i> -不感応関数へ 99
	(P)	双対問題の導出 100
	(c)	サポートベクトル回帰のスパース性 101
	(d)	損失関数の一般化 102
4.3	損男	- 関数も最適化する:ν トリック 103
4.4	外扌	ι値・新規性検出 ······ 106
	(a)	1 クラス ν-サポートベクトルマシン 107
	(b)	データを包含する球 109
4.5	Щ_	二次計画問題の基本解法
4.6	その	つ他の話題112
	(a)	L_1 正則化によるスパース化 112
	(b)	フーバー型ロバスト推定 115
	(c)	カーネルロジスティック回帰: 確率モデルによるクラス識別 116
	(d)	多クラス識別 117
	(/	
第5章	i	カーネルの設計 123
5.1	カー	- ネルの変換と組み合わせ124
	(a)	基本形 124
	(P)	組み合わせの例 125
	(c)	平行移動不変カーネル 127

第7章 汎化と正則化の理論

7.2 止則	化とカーネル法
(a)	リプレゼンター定理 169
(P)	正則化からカーネルへ 171
(c)	正規過程:正則化と確率モデル 173
7.3 関数	の複雑さと汎化の理論
(a)	経験損失と期待損失 177
(P)	大数の法則の一般化 178
(c)	ラデマッハー複雑度による評価 182
(d)	カーネル関数の複雑度 186
(e)	VC 次元との関係 187
A 付 鎉	k 191
	問題の leave-one-out クロスバリデーション誤差の 詳出 ·······
A.2 ラク	「ランジュ関数と双対問題 · · · · · · · · · · · · · · · · · · ·
A.3 文南	(案内と謝辞196
関連図書 索 引 20	199
A	