目 次

第1部 化石燃料大量消費社会における地球温暖化の抑制 1

- 第 1 章 化石燃料大量消費社会における我が国のエネルギー政策 3 参考文献 5
- ② 章 化石燃料大量使用による地球温暖化の進行と CO₂ 排出量削減施策 6 参考文献 10
- | | 第**3**章 省エネルギー技術 11
 - 3.1 家庭部門の省エネルギー技術 11
 - (1) 照明 11
 - (2) 暖房・冷房機 14
 - (3) 洗濯機 15
 - (4) 家庭用燃料電池 16
 - 3.2 民生部門の省エネルギー技術 17
 - (1) 氷蓄熱システム 17
 - (2) CO₂ 冷媒ヒートポンプ給湯器 17
 - (3) 河川水および地中熱を利用した蓄熱槽 17
 - 3.3 運輸部門の省エネルギー技術 18
 - 3.3.1 自動車部門の省エネルギー技術 19
 - (1) ハイブリッド車 19
 - (2) 電気自動車 21
 - (3) 燃料電池自動車 21
 - (4) エタノール車 23
 - (5) ディーゼル車 24
 - 3.3.2 電車部門の省エネルギー技術 24
 - 3.4 電力部門の省エネルギー技術 25
 - (1) 石炭火力発電分野の超臨界圧発電, 超超臨界圧発電 28
 - (2) 石炭ガス化複合発電 29
 - (3) 燃料電池と組み合わせた複合発電 30

- 3.5 産業部門の省エネルギー技術 31
 - 3.5.1 鉄鋼部門の省エネルギー技術 32
 - (1) 高炉炉頂圧発電 32
 - (2) コークスの冷却熱風を用いた発電(コークス乾式消火設備) 33
 - (3) 水素利用の還元方法 33
 - 3.5.2 化学部門の省エネルギー技術 34
 - 3.5.3 ガラス製造業部門の省エネルギー技術 34

参考文献 36

┃_第 41 章 再生可能エネルギー技術 38

- 4.1 太陽エネルギーの発電技術 38
 - 4.1.1 太陽エネルギーの発電技術の種類 38
 - (1) 太陽光発電技術 38
 - (2) 太陽熱発電技術 44
 - 4.1.2 太陽エネルギーの発電の開発動向 46
 - (1) 太陽電池の開発動向 46
 - (2) 太陽熱発電の開発動向 48
 - 4.1.3 太陽エネルギーの潜在容量 50
- 4.2 風力発電技術 51
 - 4.2.1 風力発電システムの発電出力 52
 - 4.2.2 風力発電システムの課題と技術動向 53
 - (1) 落雷対策 53
 - (2) 風力発電システムと蓄電池の組合せによる出力変動の抑制 53
 - (3) 風力発電システムの大型化 53
 - (4) 風力発電方式 56
 - (5) 洋上風力発電 58
 - 4.2.3 風力発電設備の導入状況と潜在容量 61
- 4.3 バイオマス利用技術 62
 - 4.3.1 バイオマスからエネルギーへの変換プロセス技術の種類 63
 - (1) 燃焼法 64
 - (2) 熱化学的変換法 64
 - (3) 生物学的変換法 66
 - (4) その他の方法 70
 - 4.3.2 バイオマスの利用実績と潜在容量 71
- 4.4 地熱発電技術 72
 - 4.4.1 地熱発電の種類 73

- (1)蒸気発電 73
- (2) 熱水卓越型発電 73
- (3) バイナリー発電 74
- (4) 高温岩体発電 75
- (5) マグマ発電 76
- 4.4.2 地熱発電の潜在量 76
- 4.5 海洋エネルギー発電技術 78
 - 4.5.1 海洋エネルギー発電の種類 78
 - (1) 波力発電 78
 - (2) 海洋温度差発電 80
 - (3) 潮汐発電 82
 - 4.5.2 海洋エネルギー発電の潜在量 84
- 4.6 熱電発電技術 84

参考文献 87

■第 5 章 原子力発電技術 90

- (1) 燃料のエネルギー密度が高い 90
- (2) 核燃料物質、放射性物質という特別な物質を取り扱う 90
- (3) 核燃料サイクルの必要性 90
- 5.1 原子力発電の種類 91
 - 5.1.1 軽水炉 91
 - (1)沸騰水型原子炉 92
 - (2) 加圧水型原子炉 92
 - 5.1.2 高速増殖炉 95
 - 5.1.3 高温ガス炉 96
- 5.2 核燃料サイクルと放射性廃棄物の処理 98
- 5.3 原子力発電の今後 101

参考文献 104

■第6章 炭素分の少ない燃料の適用技術 105

- 6.1 LNG の特徴と製造方法 105
- 6.2 LNG の適用 107
 - (1) 電力部門への適用 107
 - (2) 分散型電源への適用 111
 - (3) 交通機関などへの適用 112

参考文献 113

$\overline{}$		
第 章	CO。の回収・貯留技術	114

- 7.1 CO₂の分離・回収方法 114
- 7.2 地中貯留方法 116
 - (1) 帯水層での貯留 116
 - (2) 石油増進回収(Enhanced Oil Recovery: EOR) 118
 - (3) 天然ガス増進回収(Enhanced gas Recovery: EGR) 119
 - (4) 炭層での貯留 119
- 7.3 CCS 技術による CO₂ 地中貯留の潜在量 120

参考文献 120

- 8.1 我が国の CO2 削減施策とその評価 121
- 8.2 世界の CO₂ 削減施策に向けた海外支援活動 125
 - (1) 電力部門における省エネルギー技術の普及 126
 - (2) 鉄鋼部門における省エネルギー技術の普及 126
 - (3) 家庭・業務部門へのヒートポンプの活用 126
 - (4) 海外支援推進のための 2 国間オフセットメカニズム 127

参考文献 128

第2部 再生可能エネルギーの大量導入社会に向けて 131

【第
 9 章 再生可能エネルギーの大量導入社会 133

- 9.1 再生可能エネルギー導入の電力系統への影響 133
 - 9.1.1 従来の電力供給システム 133
 - 9.1.2 再生可能エネルギー電源の特徴 135
 - 9.1.3 再生可能エネルギー導入量の電力系統への影響 137
 - (1) フェーズ 1 137
 - (2) フェーズ 1 138
 - (3) フェーズⅢ 138
- 9.2 電力系統のスマートグリッド化 138
 - 9.2.1 スマートグリッドの必要性とその実施内容 138
 - 9.2.2 再生可能エネルギーの大量導入時に発生する課題と解決策 142
- 9.3 再生可能エネルギー利用による水素社会の実現に向けて 145
 - 9.3.1 再生可能エネルギー利用による水素発電システムとは 145

9.3.2 水素インフラ規模 146

参考文献 148

■ 1 0 章 電力貯蔵技術 149

- 10.1 蓄電池による電力貯蔵 149
 - 10.1.1 NAS 電池 (ナトリウム硫黄電池) 149
 - 10.1.2 レドックスフロー電池 151
 - 10.1.3 ニッケル水素電池 153
 - 10.1.4 リチウムイオン雷池 155
- 10.2 揚水発電の利用 159
- 10.3 電気分解による水素製造とその利用 159
- 10.4 フライホィールによる電力貯蔵 160
 - (1) パルス的大電力の供給 160
 - (2) 電車の電力回生への適用 161
- 10.5 圧縮空気貯蔵 161
- 10.6 超電導コイルによるエネルギー貯蔵 163

参考文献 165

- 11.1 水素の製造 166
 - 11.1.1 化石燃料からの水素製造 166
 - (1) 家庭用燃料電池の水素製造 166
 - (2) 自動車用燃料電池の水素製造 167
 - 11.1.2 副産物としての水素製造(副生水素) 168
 - (1) 製鉄所の副牛水素 168
 - (2) 食塩電気分解時に発生する水素 169
 - (3) 石油工業での水素製造 170
 - 11.1.3 ガス化による水素製造 171
 - (1) 石炭ガス化 171
 - (2) バイオマスガス化 171
 - 11.1.4 電気分解による水素製造方法 173
 - 11.1.5 原子力エネルギーの利用による水素製造 (熱化学分解法・IS プロセス) 174
- 11.2 水素の貯蔵 175
 - 11.2.1 液体水素による貯蔵 175
 - 11.2.2 有機ハイドライド 177

- 11.2.3 圧縮水素 178
- 11.2.4 水素吸蔵合金 178
- 11.3 水素の輸送 179
 - 11.3.1 液体水素輸送 179
 - 11.3.2 パイプラインによる輸送 179
 - 11.3.3 有機ハイドライドによる輸送 181
- 11.4 水素利用社会 181
- 参考文献 183

第12章

燃料電池技術 184

- 12.1 固体高分子形燃料電池(PEFC) 184
 - 12.1.1 PEFC の特徴 187
 - (1) セルの高性能化 187
 - (2) 加湿の影響 188
 - 12.1.2 PEFC の適用例 189
 - (1) 燃料電池自動車 189
 - (2) 家庭用燃料電池 190
 - (3) 定置用燃料電池 190
- 12.2 リン酸形燃料電池(PAFC) 192
 - 12.2.1 PAFC の特徴と PEFC との大きな相違 193
 - (1) PEFC との相違 194
 - (2) PAFC の主な特性 196
 - 12.2.2 PAFCの適用 198
- 12.3 溶融炭酸塩形燃料電池 (MCFC) 199
 - 12.3.1 MCFC の特徴 201
 - 12.3.2 MCFC の適用例 202
 - (1) オンサイト電源 202
 - (2) ガスタービンとのハイブリッド化 203
 - (3) 複合発電プラントのシステム解析 204
- 12.4 固体酸化物形燃料電池(SOFC) 205
 - 12.4.1 SOFC の構成 205
 - 12.4.2 SOFC の特徴と特性 208
 - 12.4.3 SOFC の適用例 210
 - (1) 電力用システム 210
 - (2) 家庭用 1 kW SOFC 発電システム 213
- 12.5 再生型燃料電池 215

- 12.5.1 固体高分子膜を使った水電気分解用セル 215
- 12.5.2 CO。削減および再生可能エネルギーの大量導入における 燃料雷池 216

参考文献 218

付録 220

- 1 我が国の再生可能エネルギー 220
 - 1.1 導入の実績と見込量 220
 - 1.2 日本の再生可能エネルギーの潜在量 223
- 2 世界の再生可能エネルギー導入実績と見込量および潜在量 223
 - 2.1 導入実績と見込量 223
 - 2.2 潜在量 223
- 3 電源別の発電コスト 226
- 4 化石燃料の埋蔵量 226

参考文献 226

あとがき 228

索引 230

ジュール加熱に要する熱エネルギーの算出 15

蒸気タービンの熱効率とその求め方 30

デザーテック計画 49

質量欠損と核分裂エネルギー 91

半減期 101

原子力発電所の安全対策について 103

コンバインドサイクル発電の発電効率 109

太陽光導入による CO2 排出量削減の算出方法 125

電気分解効率 174

世界最高発電効率の小型 SOFC システム 214