目 次

1章	はじめに:本書の目的	1
	1.1 活性炭とは <i>1</i>	
	1.1.1 細孔について 2	
	1.2 活性炭とその原料:2章 3	
	1.3 炭素中の細孔とそのモデル化:3章 5	
	1.4 細孔のキャラクタリゼーション:4章 7	
	1.5 賦活プロセス (ガス賦活):5章 8	
	1.6 賦活プロセス(薬品賦活): 6 章 9	
	1.7 活性炭構造の SEM 像と TEM 像:7 章 9	
	1.8 活性炭の用途:8章 <i>9</i>	
	1.8.1 はじめに 9 1.8.2 水溶液からの吸着 <i>10</i>	
	I.9 活性炭の製造と参考資料:9章 12	
2章	5性炭(原料)	13
	2.1 炭素材料 13	
	2.2 炭素の原料 16	
	2.3 炭素用語体系 18	
	2.4 炭素元素 22	
	2.5 産業的に利用される炭素 24	
	2.6 固相での炭素の調製法 <i>26</i>	

×	Ħ	次

目	次	vi
H	<i>(</i> /\	X1

	2.6.1 はじめに 26 2.6.2 固相炭化 27 熱処理温度による表面積の変化(29) 熱処理温度によるラジカル濃度(ESR)の変化(30) 石炭由来活性炭(33) 石炭化度(35) 石炭中のミクロ孔(36)	3.4.2 枝分れモデル 873.4.3 Norit モデル 893.4.4 ヘキサクロロベンゼンから調製した炭素 893.4.5 ポテトチップスモデル 91
	2.7 液相での炭素の調製法:液晶 40	3.4.6 Kaneko らのモデル 92
	2.7.1 はじめに 40	3.4.7 Ruike らのモデル 94 3.4.8 Dahn らの falling card モデル 95
	2.7.2 ネマチック液晶 41	3.4.8 Dahn らの falling card モデル 95 3.4.9 Yoshida らのガラス状炭素モデル 96
	2.8 気相での炭素の調製法 44	3.4.10 Oberlin らおよび Oberlin による炭素粒子の多孔性微細構造モデル 97
		3.4.11 Biggs と Agarwal と Biggs らによる VPS モデル 98
	2.8.1 はじめに 44	3.4.12 Segarra と Glandt による多孔質炭素モデル 101
	2.8.2 カーボンブラック 45	3.4.13 Wang らによる強束縛モデル <i>103</i>
	2.8.3 フラーレン, ナノチューブ, ネックレス 47	3.4.14 Acharya らによるコンピューターモデル <i>104</i>
	2.9 炭素の構造 50	3.4.15 O'Malley らのガラス状炭素モデル <i>106</i>
	2.9.1 結合と構造 <i>50</i>	3.4.16 Pikunic らのガラス状炭素モデル <i>107</i>
	2.10 "結晶子"(黒鉛微結晶) の概念の非正当性 <i>52</i>	3.4.17 Petersen らの多孔質炭素のモデル <i>109</i>
		3.4.18 Gavalda らと Job らによる炭素エアロゲル 110
	2.10.1 はじめに 52	3.4.19 走査型電子顕微鏡 (SEM) によるモンモリロナイトの構造 112
	2.10.2 石炭中の黒鉛微結晶 54	3.4.20 走査型電子顕微鏡写真,Rodríguez-Reinoso 112
	2.10.3 X 線回折線のブロードニングの原因 56 2.10.4 黒鉛微結晶理論:結論 59	3.4.21 高分解能透過型電子顕微鏡像,干涉縞像,Marshら 113
		3.4.22 Byrne と Marsh によって提案された活性炭の細孔モデル 116
	2.11 ラマン分光法(RMS)による構造解析:評価 60	3.4.23 Bojan と Steele による細孔充填モデル 116 3.4.24 Davies と Seaton による細孔の形状分布 117
	2.11.1 RMS を使う前に 602.11.2 RMS データの間違った解釈 602.11.3 ピッチを用いたもっとも正確な研究 62	3.4.25 Pfeifer らによるナノ細孔(ミクロ孔)のフラクタルネットワーク充塡モデル 118
	2.11.4 ラマンスペクトルの解釈 64	3.4.26 Gun'koと Mikhalovsky および Yang らによるスリット型細孔の評価 <i>123</i>
	2.12 反射顕微鏡と活性炭の構造 66	123 3.4.27 Py らによる星形細孔 <i>126</i>
	2.13 炭素の構造とは? まとめ 67	3.4.28 正確なミクロ孔のモデル化は可能か? 128
		3.5 モデル評価とその判定基準 <i>132</i>
	2.14.1 多孔質炭素の用途 72 2.14.2 リチウムイオン電池での応用 73	文 献 134
	文献 76 4章	: 活性炭のキャラクタリゼーション ······· <i>139</i>
3章	炭素の細孔:モデル化 ····································	4.1 基 礎 概 念 139
		4.1.1 吸着等温線 142
	3.1 はじめに 83	4.1.2 開孔と閉孔 144
	3.2 モデルに必要な条件 85	4.1.3 表面積:その真偽 145
		4.1.4 速度論と動力学 147
		4.2 細孔のキャラクタリゼーション:ガス吸着 149
	3.4 さまざまなモデル 87	4.2.1 吸着等温線の測定 149
	3.4.1 ドリルの穴モデル 87	4.2.2 吸着等温線の定性的解釈 <i>151</i>

4.2.3 吸着等温線の定量的解釈 152

268

	5.9.4 1989 年: 方法 288	6.3.4 アルカリ金属塩賦活のまとめ <i>351</i>
	5.9.5 1989 年:おもな総説―吸着方法 <i>290</i>	6.4 6種の賦活剤による炭素布の賦活 352
	5.9.6 1991 年:おもな総説―ガス賦活 <i>290</i>	6.5 その他の文献情報 354
	5.9.7 1995 年:異なる原料の利用 292	
	5.9.8 1997 年:異なる実験条件での賦活 292	文献 356
	5.9.9 2000 年: 分子ふるい炭素 295	
	5.9.10 2000 年:炭素繊維の賦活 299 5.9.11 2001 年:加圧下での炭化 301	7 章 活性炭構造の SEM 像と TEM 像 361
	5.9.11 2001 年:加圧下での炭化 301 5.9.12 2001 年:浸漬熱測定の総説 302	
	5.9.13 2001年・役頃深崎原とり続ば 302 5.9.13 2001年:多孔質材料のハンドブック 303	7.1 はじめに 361
	5.9.14 2001 年:炭素海泡石ペレット 303	
	5.10 ガス賦活プロセス:効果のまとめ 305	7.2 顕微鏡を利用した観察法 363
		7.3 活性炭の顕微鏡写真 364
	5.10.1 一般的な考え方 305	7.3.1 SEM 像 364
	5.10.2 炭酸ガス賦活と水蒸気賦活の比較 306	7.3.2 TEM 像 370
	5.10.3 一段階賦活と二段階賦活 309	7.4 ま と め <i>375</i>
	5.10.4 超臨界水での賦活 310	文 献 <i>376</i>
	文 献 310	X нд 370
6章	賦活プロセス (薬品賦活) 315	8章 活性炭の用途 377
	6.1 薬品賦活 315	8.1 液相吸着 377
	6.1.1 はじめに 315	8.1.1 はじめに 377
	6.1.2 含浸法とその効果 317	8.1.2 水溶液からのヨウ素と酢酸の吸着 378
	塩化亜鉛賦活 (317) リン酸賦活 (319) 水酸化カリウム賦活 (321)	8.1.3 水溶液からの無機物の吸着 381
	試活剤の作用機構の比較 (323)	水銀の吸着(385) クロム類の吸着(387) カドミニウム類の吸着(388) 金.銀類の吸着(389) 亜鉛類の吸着(391) マンガン溶液からの Zn(II).
	6.1.3 薬品賦活によるモノリス炭素の調製 325	Cu(II), Fe(III) の吸着(392)
	6.1.4 吸着されたメタンの密度 328 6.1.5 まとめ 332	8.1.4 水溶液からの有機物の吸着 393
		はじめに (393)
	6.2 リン酸賦活の化学 332	子(395) 吸着剤の特性(395) 吸着質の特性(398) 溶液の化学: pH とイオン強度の重要性(401) Moreno-Castilla の総説の概要(405)
	6.2.1 方 法 332	Dabrowski らの総説の概要:吸着機構(405) Dabrowski らの総説の概要:
	6.2.2 細孔の発達 <i>334</i>	不可逆吸着(406)
	6.2.3 分析 335	8.1.5 その他の研究:研究例 407
	6.2.4 形状と大きさの変化 <i>336</i> 6.2.5 リン酸賦活の化学 <i>338</i>	8.2 気相での吸着の用途 409
	6.2.5 リン酸賦活の化学 338 低温< 150 ℃での反応(338) 中程度の温度 > 150 ℃、< 450 ℃ での反応	8.2.1 はじめに 409
	(340) 高温 > 450 ℃での反応 (343)	8.2.2 気体の精製 411
	6.2.6 まとめ 343	8.2.3 混合ガスの分離:分子ふるい炭素 414
	6.3 アルカリ金属 (K と Na) 塩による薬品賦活 343	8.2.4 メタン貯蔵 416
		8.2.5 溶剤回収 419
	6.3.1 はじめに <i>343</i> 6.3.2 層間化合物 <i>344</i>	8.3 液相での吸着の用途 420
	6.3.2 暦间11音物 344 6.3.3 アルカリ金属塩賦活の化学 347	8.3.1 はじめに <i>420</i>
	OTOTO VIVIA V TOTAL NEW MICHAEL DAY	100

xvi	目	次
		8.3.2 水処理 421
		8.3.3 飲食料品 424
		8.3.4 化学品と医薬品 424
		8.3.5 染 料 424
		8.3.6 その他の用途 425
	8.4	触媒工程における多孔質炭素 426
		8.4.1 はじめに 426
		8.4.2 活性炭担持触媒 427
		8.4.3 活性炭の表面化学の影響 429
		8.4.4 炭素の不活性度の影響 <i>433</i>
		8.4.5 炭素表面の触媒作用 437
		8.4.6 補足的研究 <i>439</i> 8.4.7 触媒反応とエアロゲル炭素 <i>440</i>
		8.4.8 触媒工程における多孔質炭素のまとめ 441
	8.5	添着活性炭 441
	8.6	
		活性炭の将来 443
	文	献 444
9章	活性	炭の製造と参考資料······ 451
	9.1	製 造 451
		9.1.1 はじめに 451
		9.1.2 製造方法 451
		9.1.3 出発原料 452
		9.1.4 炉 455
		9.1.5 品質管理:試験 456
		9.1.6 洗 净 459 9.1.7 再 生 459
		9.1.8 工業生産 460
		9.1.9 消費 462
		9.1.10 価格 464
		9.1.11 まとめ 464
	9.2	参 考 465
		9.2.1 はじめに 465
		9.2.2 学術雑誌 "Carbon" のキーワード <i>465</i>
		9.2.3 IUPAC の定義 468

492

9.3 表面化学:人物紹介

9.3.1 Irving Langmuir

9.3.2 Brunauer, Emmett, Teller

		9.3.	3 Stephen Bruna	r 494		
		9.3.	4 Paul Emmett	495	•	
		9.3.	5 Edward Teller	496		
		9.3.	6 Mikhail M. Dul	in <i>497</i>		
	文	献	498			
名	索引		•••••	•••••		501
	3					521

目 次

xvii