ix

目次

第1章	はじめに	1
1.1	ひどい事故がおきた	ı
1.2	新しい「常識の基盤」をつくっていくために	3
1.3	この本の構成	5
第 2 章	放射性物質と放射線・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	7
2.1	原子、分子、そして、化学反応・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	7
	原子とその「中身」	7
	分子と化学反応	9
	化学結合・化学反応と原子核	IO
2.2	原子核と放射線	I I
	原子核の構造	I I
	原子核の崩壊	I 2
	放射線	13
	放射性同位元素	14
2.3	放射性物質	15
	放射性物質、放射線、放射能	15
	ベクレルとは何か	15
	ベクレルを含む単位	16
	半減期とは何か	17
2.4	放射線	19
	放射線	19
	放射線の種類	20
	放射線の強さ	22
	「自然の」放射線と「人工の」放射線	23
2.5	放射線に「常識」は通用しない・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	24
	化学反応と原子核の変化におけるエネルギー	24
	「常識」が通用しないということ	24

第 3 章	原子力と原子力発電所事故	27
3.1	原子力発電とは何か	27
	原子力についてもっとも重要なこと	27
	ウランの核分裂の連鎖反応	28
	原子爆弾と原子力発電	29
	原子力発電の「やっかいな」点	30
3.2	福島第一原子力発電所での大事故	31
	事故の概要	31
	冷却作業はずっと続く	33
	再臨界について	34
	「冷温停止状態」になって事故は「収束」したのか	35
第 4 章	放射線の被曝と健康への影響	37
4.1	放射線の被曝・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
	外部被曝	
	内部被曝	
	内部被曝は特に危険なのか	•
4.2	シーベルトとは何か	•
	実効線量とシーベルト	
	シーベルトに関連する単位	
	外部被曝の実効線量	
	内部被曝の実効線量	
	内部被曝の実効線量係数	•
	普段はどれくらい被曝しているか	
	等価線量について	
4.3	被曝の健康への影響・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
	わりとすぐに影響が出る場合	
	後からじわじわと影響が出る場合	
	放射線のエネルギーと体へのダメージ	55
	放射線が体にダメージを与える仕組み (の一つ)	
	DNA の傷と癌······	57
4.4	被曝によってどれだけ癌が増えるか・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	58
	そもそもどれくらいの人が癌になるのか	
	広島・長崎の被爆者の追跡調査	
4.5	被曝による癌のリスクについての「公式の考え」・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	61

	ICRP の「公式の考え」とは何か	61
	「公式の考え」はどうやって得られたか	64
	「公式の考え」をめぐって	67
	被曝量についての ICRP の勧告	68
	低線量被曝の難しさ	7 I
4.6	確率的におきる出来事についての考え方	72
	運命のクジ引き	73
	大勢でクジを引く	74
	癌のリスク	75
	どう考えるのか	76
4.7	子供の被曝は別格に考える	77
	一般的な考え方	77
	広島・長崎の調査結果	78
	妊婦と胎児の被曝について	79
第 5 章	放射性セシウムによる地面の汚染	81
5.1	汚染の大まかな様子	81
	各地での汚染	
	1960 年代の放射性物質の降下	•
	除染について	
5.2	地面の汚染と放射線・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
	空間線量の原因	,
	空間線量率と地表の汚染密度の関係	88
	どれくらい遠くからの放射線を測っているのか	90
5.3	空間線量率と被曝線量・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	92
	年間の被曝線量の見積もり方	92
	野外活動などによる余分な被曝線量の見積もり	94
	空間線量率の時間変化と通算の被曝線量	95
第 6 章	放射性セシウムによる食品の汚染	99
6.1	食品の汚染と内部被曝	
	食品中の放射性物質	
	食品中の放射性セシウムについての基準	
6.2	実効線量を用いる内部被曝の見積もり	102

6.3	セシウムの平衡量とカリウムの量の比較	103
	放射性カリウムについて	104
	体に入ったセシウムはどうなるか	105
	セシウムの平衡量	107
6.4	セシウムの内部被曝についてどう考えるか・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	109
	実効線量を目安にする	110
	セシウムとカリウムの比を目安にする	110
	内部被曝の現状	111
第 7 章	さいごに	113
		,
7.1	被曝による健康被害はどうなるのか・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	113
	人がバタバタと倒れることはない	113
	健康を害する人が目に見えて増えることもない(だろう)	114
	議論は続くだろう	116
7.2	これからどう考えていけばいいのか	116
	簡単な答えはない	17
	今は普通の時ではない	118
	「気にする自由」と「気にしない自由」	119
付録 🛕	知っていると便利なこと	
142471	THE SCIENTIFIC CO.	121
A.1	エネルギーって何?	121
A.2	10のべき乗——大きい数と小さい数の表わし方	
		9
付録 ${f B}$	関連する少し詳しいことがら	131
B.1	リスク、過剰絶対リスク、過剰相対リスク・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	_
$\mathbf{B.2}$	吸収線量、等価線量、実効線量	
B.3	ベクレルからモル、グラムへの換算	
B.4	セシウム134とセシウム137の放射能強度比	143
-1. → •		
密 引		145