\bigcirc	口絵
\bigcirc	発刊にあたって權田
\bigcirc	執筆者一 暨

第1編 薄膜材料の特性と特徴

第1	章 薄膜の特徴と特性
第1節	薄膜とは
第2節	薄膜の定義と表現 薄膜の歴史 薄膜の特徴
第3節	薄膜化効果 表面効果および界面効果 結晶構造変化 多層構造による効果 その他 薄膜の特性と作製方法 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
第4節	要求特性と作製条件 作製・形成方法 薄膜作製の素過程 薄膜特性と作製方法 薄膜の特性と評価 ····································
第	薄膜材料の電気特性
第1節	電気伝導
第2節	磁界効果
\$\$ 0.55	MOS反転層における2次元導電現象と電流磁気効果
第3節	熱電効果 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
第4節	ピエゾ抵抗 ····································
第3	薄膜材料の磁気特性

目一1

第2節	磁性体の分類および磁気的性質<宮﨑 照宣> … 磁性体の分類 飽和磁化およびキュリー温度 磁気異方性 磁区	. 70
第3節	軟磁性薄膜	·· 81
第4節	硬磁性薄膜 ······<宮﨑 照宣> ···· 磁気記録媒体としての磁性薄膜 Nd-Fe-B/α-Fe多層膜型ナノコンポジット磁石	88
第5節	スピンエレクトロニクス薄膜 ····································	·· 91
第4	薄膜材料の光学特性	-
第1節	透過・反射 ····································	106
第2節	吸 収 ···································	114
第3節	発 光 ···································	121
第4節	電気光学効果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	130
第5節	磁気光学効果<片山 利一> … 磁気光学効果の現象論 磁気光学効果の測定法 各種物質の磁気光学スペクトル	136
第6節	光伝導・光起電力 ····································	152
(集	薄膜材料の力学特性	
第1節	応力・ひずみ ······<生地 文也> ··· 応力測定法 蒸着膜応力 スパッタ膜応力 真性応力の原因	160
第2節	硬さ・強度 ······ <金沢 憲一/廣川 啓> ··· 硬さの物理的意味 超微小硬さについて 薄膜の硬さ測定例	166
第3節	付着力・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	174
第4節	薄膜トライボロジー ····································	185

第6章

薄膜材料の化学特性

第1節	表面反応 ······<藤田 大介> ···	196
	シリコンの熱酸化 シリコン系の窒化 金属の高温酸化	
第2節	光触媒 < 垰田 博史 > …	206
	光触媒と光電気化学セル 微粒子光触媒のエネルギー構造 光触媒の反応性に対する	
	粒径効果 酸化チタン光触媒 酸化チタンの光触媒作用 酸化チタン光触媒の固定化	
	酸化チタン透明薄膜光触媒の抗菌性 酸化チタン透明薄膜光触媒の超親水性	
第3節	耐食性,腐食性<高井 治>…	213
	腐食性 耐食性	
第4節	(超)はつ水/(超)親水表面く辻井 薫>…	224
	ぬれを支配する二つの因子 ぬれに対する化学的因子の効果 フラクタル表面のぬ	
	れ:微細構造因子の効果 超はっ水/はつ油表面の実現 超はっ水表面に関する他	
	の研究	

第2編 薄膜の作製と加工

第1章

基板と表面処理

第1節	金属基板	234
	ステンレス鋼基板 非鉄材料	
第2節	半導体基板(Si, GaAs 等Ⅲ-V族化合物, SiC)······<岩崎 裕>···	243
	シリコン基板表面処理 GaAs等Ⅲ−V族化合物半導体基板表面処理 SiC基板表面処	
	理	
第3節	絶縁体基板	
	ガラス基板く中尾 泰昌> …	251
	ガラス材料の特徴 ガラス基板への要求項目 各種基板ガラスの種類および製造法	
	ガラス基板の代表的用途	
	酸化物単結晶基板:サファイア(ZnO、ペロブスカイト)	
		258
	サファイア (Al_2O_3) 酸化亜鉛 (ZnO) 各種ペロブスカイト基板結晶 微傾斜基板ほか	
	酸化物基板:マグネシア(MgO) ····································	265
	マグネシア単結晶の育成 マグネシア単結晶基板の加工 マグネシア単結晶基板の熱	
	処理	
第4節	プラスチック基板<千葉 潔>…	269
	プラスチックとは プラスチック基板の留意点 応用各論 まとめと将来展望	

第2章	

PVD法

真空蒸着法 <吉田 貞史> …	280
真空蒸着 化合物の蒸着	
分子線エピタキシー(MBE)法····································	288
MBEの原理と特徴 固体ソース MBE装置と MBE成長 ガスソース MBE装置と成長	
過程 Ⅲ−V族化合物半導体のMBE Si系半導体のMBE Ⅱ−VI族化合物半導体のMBE	
シリサイド,金属間化合物,絶縁物のMBE	
スパッタリング法<大脇 健史/多賀 康訓> …	306
スパッタ現象 スパッタ成膜過程 スパッタ成膜法	
イオン化蒸着法く高岡 義寛 > …	316
薄膜形成におけるイオン照射効果 イオン化蒸着膜の形成方法と特徴	
パルスレーザ堆積(レーザアブレーション)法<大久保勇男/鯉沼 秀臣>…	325
原理と特徴 成膜装置 メカニズム 研究例 新しい展開:コンビナトリアルレーザ	
分子線エピタキシー法	
	真空蒸着 化合物の蒸着 分子線エピタキシー(MBE)法・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・

第3章

CVD法

第1節	熱CVD法		
	熱 CVD の原理 ···································	彰>…	340
	熱CVD反応系の種類とその特徴		
	シリコン系半導体膜<室田 淳一/櫻庭 政	夫> …	346
	SiGe 薄膜のGe 比率制御とP,B,Cドーピング制御 シリコン系薄膜の選択エピ	タキ	
	シャル成長と多結晶成長 シリコン系薄膜の原子層成長制御と原子層ドーピング	制御	
	金属・シリサイド膜<依田	孝> …	350
	各論(Si デバイス適用例)		
	金属窒化膜<大下 祥	雄>…	356
	金属窒化膜の堆積		
	絶縁膜く佐藤 淳	·-> ···	362
	低温熱CVD:SiO ₂ 高温熱CVD:SiO ₂ 高温熱CVD:Si ₃ N ₄		
第2節	ALE法		
	ALE 法の原理 ····································	之> …	368
	ALEの特徴 ALEプロセスのメカニズム ALEプロセスウインドー ALEリアク	ター	
	ALE法によるアルミナ/チタニア積層膜の形成…<片山 雅之/伊藤 信	衛> …	373
	ATO膜の特徴 ATO膜の実例		
	LSI 用膜 ·······< 武藤 勝	彦> …	377
	ALCVD法の特徴とLSI用膜への適用性 LSI用膜のALCVDプロセス概要 Al ₂ O	₃膜	
	ZrO ₂ 膜 その他		

第3節	プラズマCVD法	
	プラズマ CVD 法および光 CVD 法 ···································	384
	プラズマ CVD 法の原理・概観 光 CVD の原理・概観	
	アモルファスおよび微結晶シリコン系薄膜く宮崎 誠一> …	389
	シリコンおよび low-k 膜の成膜<辰巳	394
	シリコンの低温成膜 low-k膜の成膜	
第4節	MOCVD法	
	MOCVD 法の原理 ····································	402
	MOCVD用原料 MOCVD装置 結晶成長機構	
	Ⅲ-Ⅴ族<福井 孝志>…	407
	GaAs系 InP系 GaN系 選択成長 量子ナノ構造	
	Ⅱ-Ⅵ族<藤田 静雄>…	411
	Ⅱ-VI族半導体とMOCVD ナローギャップ系 ミドルギャップ系 ワイドギャップ系	
	酸化物	417
	超伝導酸化物薄膜 強誘電性酸化物薄膜 酸化物薄膜の原子層 CVD	
"生人	液相成長法	
第1節	液相エピタキシー法<助川 徳三/田中 昭> …	426
	原理と成長方法 成長層の厚さの制御 混晶の組成制御 格子整合 不純物濃度の制御	
第2節	種子結晶基板製作への応用と展望く助川 徳三/田中 昭> …	433
	基板用結晶と成長原理 厚い結晶層の成長法	
金	塗布・ゾル−ゲル法	
A.		
第1節	塗布法く永嶋 慎二>…	442
	概略 塗布形成層間絶縁膜材料 スピンコーティング法 プリウェット-スピンコーテ	
	ィング法 ノズルスキャン塗布法	
第2節	インクジェット塗布法<森井 克行/下田 達也> …	451
210 — 241	インクジェットの要素技術 インクジェット液滴の特徴 インクジェット塗布成膜技	
	術:有機ELディスプレイ開発	
第3節	ゾルーゲル法による機能性薄膜の作製く峠 登>…	459
1. 0 11	ブルーゲルプロセス 無機・有機ハイブリッド膜 ブルーゲル法による機能性薄膜と微	
	細パターニング 光感応性ゲル膜による電子・光学素子の作製	
第4節	めつき法く逢坂 哲彌/尾上 貴弘>…	468

電気めっき 無電解めっき 応用例

		Mary.	
4		W. E. C.	lle.
100			49
	353	200	9"

ナノ構造作製法

	半導体微細加工技術 電子ビーム用レジストの解像度 高解像度電子線用ネガ型レジ	
	スト:カリックスアレン レジストの分子量と解像度ならびに感度の関係 集束イオ	
	ンビームによる立体ナノ構造形成技術	
第2節	MBE による自己形成量子ドット<西 研一> …	489
	自己形成量子ドットの形成原理 MBEによる形成技術	
第3節	フォトニック結晶<野田	496
	完全3次元フォトニック結晶と超小型光回路 2次元フォトニック結晶とその応用	
籍	有機・高分子・生体関連薄膜作製法	
第1節	ウェット作製プロセス	
	スピンコート, LB ···································	508
	スピンコーティング 水面上の単分子膜形成能と化学構造 単分子膜 LB法 LB膜	
	の構造 LB膜製膜装置 π-A曲線	
	電解重合法	515
	薄膜作製法としての電解重合法 電解重合膜の作製システム 電解重合膜の成長 カ	
	ウンターイオンによる機能付加 電気化学デバイスの固体化	
	交互吸着法 くーノ瀬 泉 > …	520
	交互吸着法とは 薄膜作製法 積層薄膜の構造 交互吸着法の展開 交互吸着膜の利用	
第2節	ドライ作製プロセス	
	蒸着法(分子線エピタキシー法)<小間	525
	ファンデアワールス基板上への有機薄膜のエピタキシャル成長 ダングリングボンド	
	終端した基板表面上への有機薄膜のエピタキシャル成長 イオン結晶基板上への有機	
	分子薄膜のエピタキシャル成長 選択成長による有機ナノ構造の作製 今後の展望	
	蒸着重合く高橋 善和 > …	530
	ラジカル重合系蒸着重合 縮合系蒸着重合 蒸着重合の特徴 蒸着重合の応用 将来	
	の薄膜材料への展望	
第3節	ソフトマテリアルの自己組織化	
	金-チオール自己組織化膜 ······	535
	自己組織化膜の作製法 アルカンチオール自己組織化膜の構造と物性 機能性自己組	
	織化膜の作製と応用	
	低分子(合成脂質系)	541
	双頭型脂質の分子設計 種々の高軸比ナノ構造(HARN)形成	
	自己組織化による高分子薄膜のパターン化<下村 政嗣>…	550
	高分子キャスト過程における「自己組織化」現象 材料化に向けて	
	タンパク質の2次元結晶化<山下 一郎> …	555

第1節 ナノ構造作製法の原理 ………………………………………<落合 幸徳>… 478

生体内のタンパク質2次元結晶 タンパク質2次元結晶作製 水溶性タンパク質:フェリチンの2次元結晶化の実例 固体基板上に作られる2次元結晶の例: S-layer, Hsp タンパク質の結晶化の目的と新しい応用

第8章

パターン化技術

第1節	リソグラフィく上野 巧> …	562
	リソグラフィの動向 KrF(248 nm)リソグラフィ 超解像リソグラフィ ArF(193 nm)	
	リソグラフィ F_2 レーザ $(157nm)$ リソグラフィ X 線リソグラフィ 電子線リソグラ	
	フィ	
第2節	レジスト<上野 巧> …	569
	リソグラフィの動向とレジスト KrF(248 nm)リソグラフィ用レジスト ArF(193 nm)	
	リソグラフィ用レジスト F_2 レーザ $(157\mathrm{nm})$ リソグラフィレジスト材料 EUV	
	(extreme UV : 13 nm)用レジスト 電子線レジスト	
第3節	ウェットエッチングく黒木 幸令> …	577
	SiO_2 のエッチング Si_3N_4 のエッチング その他の絶縁膜エッチング Si のエッチング	
	その他の半導体材料のエッチング 金属のエッチング	
金	薄膜の加工/改質技術	
No.	一行がシルエン・「女子」人们	
第1節	CMP 技術 ···································	586
	LSIデバイス平たん化とCMP技術 CMP装置と研磨液 LSIデバイス平たん化工程へ	
	の実施例	
第2節	再結晶・アニール <森本 佳宏> …	598
	レーザビーム再結晶化法 高品位多結晶 Si 薄膜形成方法	
第3節		606
	プラズマエッチングとは プラズマエッチング機構 プラズマエッチング装置 チャ	
	ージアップダメージの抑制 高密度プラズマ生成における放電周波数の効果 ガス構	
	造最適化による高精度エッチング	
第4節	レーザ加工・改質<矢部 明> …	619
	薄膜加工・改質用レーザ 研究開発状況	
第5節	X線(放射光)・電子線加工・改質	
		626
	放射光加工 電子線加工	
第6節	ビーム加工く松井 真二> …	633
	電子ビーム加工 集束イオンビーム加工 物質波テクノロジー	
第7節	STM加工	
	無機物	646
	原子の移動による加工 クラスターの移動による加工 水素原子はく離によるテンプ	

レート作製と原子オーダ加工 走査プローブ陽極酸化法を用いた微細加工 走査プローブ顕微鏡による有機材料の加工・記録

プローブ加工 プローブ記録 プローブ加工・記録の今後

第3編 薄膜・表面・界面の分析と評価

第	薄膜・表面・界面の分析・評価	
第1節	電子線	666
	透過電子回折法(transmission electron diffraction; TED) 反射高速電子回折法(refl-	
	ection high-energy electron diffraction;RHEED) 低速電子回折法(low-energy ele-	
	ctron diffraction;LEED) 透過電子顕微鏡法(transmission electron microscopy;	
	TEM) 反射電子顕微鏡法(reflection electron microscopy; REM) 反射低速電子顕	
	微鏡法(low-energy electron microscopy; LEEM) 走査電子顕微鏡法(scanning elec-	
	tron microscopy; SEM) 走查透過電子顕微鏡法(scanning transmission electron mi-	
	croscopy;STEM) 走査反射電子顕微鏡法(scanning reflection electron microscopy;	
	SREM) 電子顕微鏡を用いた分析(analytical electron microscopy; AEM)	
第2節	イオンビームによる組成分析く城戸 義明> …	681
	SIMS PIXE RBS ISS	
第3節	光	703
	概説 光吸収,光反射 フォトルミネッセンス 光伝導・光容量法	
第4節	SOR 光 ···································	716
	SOR 光の発生 挿入光源 装置 分析方法 放射光施設利用に際しての留意点	
第5節	薄膜のX線評価<松井 純爾>…	723
	多結晶薄膜 単結晶薄膜	
第6節	XPS · UPS ·······························	734
	特徴 装置 XPSスペクトルに含まれる情報 深さ方向分析 分析例 測定における	
	注意点	
第7節	走査プローブ顕微鏡<森田 清三>…	741
	走査トンネル顕微鏡(STM) 原子間力顕微鏡(AFM) 走査プローブ顕微鏡(SPM)	
Andrew .		
Fise	薄膜分析・評価対象各論	
给 1 於	膜厚分析	750
第1節		750
笠り筋	膜厚測定法 組成分析	762

	Lambert-Beerの法則と検量線 特性 X 線や単色 X 線による励起と定性分析 XPSの	
	定量分析 X線・電子線による内殻励起と定性分析 イオンによる励起と定性分析	
	オージェ電子分光法(AES)の定量分析	
第3節	形態分析<尾浦憲治郎/本多 信一>…	778
	透過電子顕微鏡 走査電子顕微鏡 反射電子顕微鏡 低エネルギー電子顕微鏡	
第4節	結晶性—— RHEED法を中心として<堀尾 吉已> …	784
	電子の波長 電子回折理論 RHEED図形による薄膜結晶の評価	
第5節	化学結合状態	794
	事前作業 手法 帯電とエネルギーの較正 相手元素(組成) 価数(形式価数)とピー	
	クエネルギー値 オージェパラメータ 主ピークからのエネルギー損失関数 多重項	
	分離 測定時損傷:化学状態分析の限界	
第6節	欠陥・応力・ひずみ・付着力――界面強度の力学的評価<北村 隆行> …	802
	界面強度の考え方 界面端からの亀裂発生 評価試験法 界面亀裂の伝播	
第7節	薄膜の表面・界面制御と信頼性<多賀 康訓>…	808
	薄膜の研究開発と表面・界面制御 薄膜界面の役割 薄膜界面制御事例	

第4編 薄膜技術の応用と展望

第1章 半導体デバイス

第

1 節	LSI	
	MOSFET 用薄膜の応用と展望 ····································	824
	薄膜とデバイススケーリング則 MOSFET構造の技術トレンド MOSFET用シリサ	
	イド膜と金属膜 技術展望	
	ゲート酸化膜<鳥海 明>…	830
	ゲート酸化膜の薄さ 酸化膜の絶縁破壊 ストレス誘起リーク電流(SILC) 今後の展開	
	メモリーセル用薄膜: DRAM 用キャパシタ薄膜 <稗田 克彦> …	838
	DRAMの動作原理 メモリーセル構造の変遷:キャパシタ容量の確保 キャパシタ材	
	料とキャパシタ薄膜作製プロセス DRAM用キャパシタの課題と技術動向	
	フラッシュメモリー用トンネル絶縁膜く小澤 良夫>…	845
	フラッシュメモリーの素子構造と動作原理 トンネル絶縁膜への要求性能 トンネル	
	酸窒化膜 トンネル絶縁膜の今後の課題	
	FeRAM 用キャパシタ薄膜く山川 晃司/小澤 良夫>…	848
	FeRAMの動作原理 キャパシタ材料とFeRAMの作製プロセス FeRAM用キャパシ	
	タの課題と動向	
	MRAM 用強磁性トンネル接合薄膜	
	<	852

MRAMの素子構造と動作原理 TMR素子材料 薄膜作製プロセスと製造装置

	MRAM用TMR薄膜の課題と動向 イオン注入 ····································	60	半導体レーザ 青紫色LD) 31
	イオン注入法の特徴 イオン注入装置 LSI デバイスにおけるイオン注入の応用と将 来展望 SOI <小椋 厚志> 86		低転位 GaN 形成技術 低転位 GaN 上 400 nm 帯 LD の構造 LD 特性 今後の展望 CCD・イメージセンサ) 36
第2節	SOI基板の製造方法 SOIデバイス 化合物電子デバイス/量子効果デバイス			
	HEMT(高電子移動度トランジスタ) 素子構造と動作原理 InP系HEMTとその特性 AlGaN/GaN系HEMTとその特性	海 島	ディスプレイ	
	Si系 HEMT MMIC技術		薄膜 EL ディスプレイ ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	<i>1</i> 40
	量子効果素子<粟野 祐二> … 8	第4即	LCD アモルファス Si TFT・・・・・・・・・・ アモルファス Si TFT の構造 TFT 用薄膜材料と製造工程 アモルファス Si TFT の	955
H	光部品		特性 アモルファス Si TFT-LCDの動向	
第1節	光学多層膜光部品		多結晶 Si TFT	960
	反射防止膜 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	先ろ即	PDP ···································	
	止膜 等価膜と多層反射防止膜 ミラーおよびフィルター	212 . 21	透明導電膜——ITOを中心に ····································	972
	反射増強膜(ミラー類) 波長分割膜(フィルター類) 光路・光量分割膜(ビームスプリッター類) その他の光学薄膜		FED ····································	977
	光学多層膜の応用例および評価方法 · · · · · · · · · · · · · · · · · · ·	02	ルの試作例 その他のエミッタと FED の試作例	
第2節	光導波路デバイス 無機光導波路デバイス	06 第4	記録	
	型波長フィルター 光スイッチ アドドロップデバイス AWGと半導体をハイブリッド化した高速波長セレクタ		磁気記録用薄膜の応用と課題 ····································	986
	有機光導波路デバイス < 丸野 透> … 9 ポリマー材料の設計と合成 光導波路作製プロセス 光インターコネクションと光実 装応用 光導波路デバイス		材料 将来展望と課題 CD · DVD · ROM ·································	997
第3節	発光ダイオード ····································	16	光ディスクの記録・再生原理 光ディスクの作業ノロセス コンパンドアイヘノ(CD) DVD 高密度化のアプローチ 光ディスクの発展	
	LEDとは LEDの発光原理,発光効率 η _{発光効率} を向上させるためのLEDの構造 半 導体材料と発光波長	第3節	書換え型 CD · DVD · · · · · · · · · · · · · · · ·	006
第4節			相変化光ディスクの概要 Ge-Sb-Te 糸記録材料 ディスク構造 ZnS-SiO ₂ 誘电体体 護層 書換え型光ディスクの高密度化	
	Ⅲ-V族半導体レーザ<野村 康彦>… 9 半導体レーザの構造と薄膜作製技術 Ⅲ-V族半導体レーザの応用分野 光ディスク用	24 第4節	近接場記録 ······<富永 淳二> ··· 10 近接場光と表面プラズモン光 近接場光と光記録 近接場記録の今後の展開	014

第5節	蒸着テープ<小野寺誠一>… 1023
	蒸着テープの構造 斜方蒸着法 磁気特性の制御方法と磁性膜の微細構造 記録再生
	特性と走行耐久性の向上 蒸着テープのアプリケーション 今後の技術動向
第6節	光磁気ディスク< 今井 奨/太田 憲雄> … 1030
	記録媒体の構造 記録原理と変調方式 再生原理と高密度化技術
無	センサ
第1節	ガスセンサ ······ 剛> ··· 1038
	ガスセンサの概要 半導体ガスセンサ 固体電解質センサへの薄膜技術の応用 その
	他のガスセンサへの薄膜技術の応用
第2節	カ学センサ
	カセンサとトルクセンサ 圧力センサ 加速度センサ 角速度センサ 振動・衝撃セ
	ンサー温度センサと流量センサ
第3節	磁気センサ
212 0 24	薄膜磁気センサ SQUIDセンサ MI効果センサ フラックスゲートセンサ Hall効
	果センサ MR/GMR/TMR効果センサ
第4節	赤外線センサ ····································
213 1 1213	量子型赤外線センサ 熱型赤外線センサ
第5節	においセンサく中本 高道> … 1080
	においセンサの原理 定常応答測定装置 測定結果 計算化学を用いたセンサ応答予
	測法
第6節	バイオセンサ<民谷 栄一/森田 資隆>… 1089
A) O H)	バイオセンサの原理 酵素固定化膜の作製と酵素センサ 免疫センサ 微生物センサ
	動物・植物組織センサ 電極型遺伝子チップセンサ
	3070 1世70/2014以 Cマッ 电型全域 は 1 / / / Cマッ
無	マイクロマシン
400 (6) 3	
第1節	マイクロマシン技術く江刺 正喜> … 1102
	マイクロマシニングとナノマシニング 具体例 実用化の課題
第2節	マイクロマシンと薄膜の機械的物性<田畑 修>… 1107
	マイクロマシニング技術を用いた薄膜の機械的物性評価手法
第3節	アクチュエータとその応用<藤田 博之>… 1114
	各種のマイクロアクチュエータ マイクロアクチュエータの応用 今後の展望

第7章

環境エネルギー

第1節	シリコン太陽電池<津田 信哉>… 1136
	太陽電池の動作原理と特徴 太陽電池の種類 薄膜太陽電池の特徴 a-Si太陽電池
	薄膜多結晶Si太陽電池 ハイブリッド太陽電池 太陽電池の応用 今後の展望
第2節	CIS 系薄膜太陽電池<櫛屋 勝巳>… 1144
	CIS系薄膜太陽電池の特徴 CIS系薄膜太陽電池の製造法 応用例:商業化への動き
第3節	色素增感太陽電池<荒川 裕則>… 1160
	グレッツェル・セルの構造とその作製法 グレッツェル・セルの発電機構 グレッツ
	ェル・セルの特徴 実用化への課題
第4節	燃料電池 <河原 和生> … 1167
	燃料電池とその原理 燃料電池の構成 燃料電池の種類 固体高分子型燃料電池 水素源
第5節	光触媒······< 排田 博史> ··· 1175
	光触媒の特徴 タンカー流出油の分解 環境ホルモンの分解 染色廃液の脱色 ダイ
	オキシン類の分解 大気浄化
第6節	選択透過膜
	選択透過無機膜<諸岡 成治/草壁 克己>… 1183
	セラミックス膜 炭素膜 ゼオライト膜 触媒膜
	有機高分子膜<岡本 健一>… 1189
	ガス分離膜 促進輸送膜 浸透気化(蒸気透過)分離膜 薄膜作製
第7節	親水・はつ水膜<大脇 健史/多賀 康訓>… 1195
	親水/はっ水膜材料 親水膜の応用 はっ水膜の応用 今後の展望
第8節	金属酸化物多孔性薄膜<藤川 茂紀/黄 建国/国武 豊喜>… 1200
	微粒子間の空隙を利用した多孔性薄膜の作製 鋳型法による多孔性薄膜の作製

第8章

有機バイオデバイス

第1節	有機発光素子
	有機薄膜発光ダイオード<筒井 哲夫>… 1210
	有機LEDディスプレイの研究開発 有機LEDの動作原理 有機LEDに用いる材料
	有機固体レーザ<谷口 彬雄>… 1218
	共振器構造の設計 有機材料の設計 導波路構造の検討
第2節	導電性高分子薄膜
	ポリアセチレン<赤木 和夫>… 1222
	ケミカルドーピング 電気伝導度 ポリアセチレン ヘリカルポリアセチレン
	ポリビニルカルバゾール類<和田 達夫>… 1228
	光学材料 エレクトロルミネッセンス材料 モノリシックフォトリフラクティブ材料
	極性配向膜作製と絶対配向方向の決定
	ポリアニリン<金藤 敬一>… 1236

設(ニュースバル)

	ポリアニリン薄膜の作製法 構造とスペクトル 電気的性質 電気化学機能	
	ポリジアセチレンく松田	宏雄>… 1242
第3節		
	π 共役低分子 ······<堀田	収>… 1248
	π共役系材料 π共役系材料を用いたトランジスタ チオフェン系トランジスタ	伝導
	機構を解明する試み 材料の構造と電気特性 アセン系トランジスタと超伝導	
	レーザ発振 まとめと将来展望	
	π 共役高分子 ····································	和也>… 1252
	動作原理 研究の現状	
	デバイス評価・応用<工藤	一浩 > … 1257
	その場電界効果測定による有機薄膜物性評価 ドナー・アクセプタ分子積層構造	
	ンジスタ 縦型有機トランジスタ 複合型有機発光トランジスタ素子	
第4節	バイオデバイス	
	光電子機能 DNA 膜 ···································	珠美> … 1261
	機能材料としてのDNA DNA膜の作製方法 インターカレーションの方法 ※	
	DNA デバイス化の可能性	
	DNA チップ ······<	嘉信> … 1266
	DNAチップとは DNAチップによる遺伝子の発現解析 DNAチップ・マイク	ロアレ
	イから次世代DNA チップへ	
	マイクロ化学デバイスく北森 武彦/佐藤	記一> … 1270
	マイクロ化学デバイスの特徴 マイクロ単位操作 主なマイクロ化学デバイス	
	光デバイスとしてのバクテリオロドプシンく小山 1	行一>… 1275
	バクテリオロドプシンの構造と機能 光デバイスへの応用 配向が制御された	
	膜の作製と解析	

(黄9重

カーボンナノストラクチャー

第1節	構造と特徴<平原 佳織/飯島 澄男>… 1282
	フラーレン カーボンナノチューブ カーボンナノホーン ナノオニオン, バッキー
	オニオン メソポアカーボン
第2節	作製と分離・精製方法<小塩 明>… 1290
	フラーレンの生成法 フラーレン分離法 カーボンナノチューブの合成法 カーボン
	ナノチューブの精製法
第3節	電界放出電子源とディスプレイ<齋藤 弥八>… 1297
	CNTの構造 電界放出とCNTの特徴 CNT膜の作製 ディスプレイへの応用
第4節	電子デバイスく二瓶 史行> … 1302
	エレクトロニクス材料としてのカーボンナノチューブ カーボンナノチューブの合成
	電界効果トランジスタ LSI配線 新機能デバイス
第5節	カーボンナノチューブ等による水素吸蔵<曽根田 靖>… 1307
	水素貯蔵技術 多様なカーボンナノストラクチャー カーボンナノチューブによる水

素吸蔵 グラファイトナノファイバーによる水素吸蔵 その他のカーボンナノストラクチャーによる水素吸蔵

- - ●キーワード索引
 - ●略語索引
 - ●化学式索引
 - ●評価方法と評価対象一覧