目 次

第2部	『 可積分発展方程式の一般論		1	
第I章	基礎的な例とその一般的な性質		3	
I.1	基礎的な連続模型の定式化		3	
I.2	格子模型の例....................................			
I.3	可積分方程式の構成方法としてのゼロ曲率表示			
I.4	NS 模型 $(\kappa = -1)$ と HM 模型のゲージ同値性			
I.5	主カイラル場模型に対するハミルトン形式			
I.6	可積分方程式の解を構成する方法としてのリーマン問題			
1.7	ゼロ曲率方程式に対する一般解の構成スキーム			
I.8	注釈と文献解説			
第 II 章	基本的な連続模型		75	
II.1	HM 模型に対する補助的線形問題	n.c.	75	
	HM 模型に対する逆問題			
II.3	HM 模型のハミルトン形式による定式化			
II.4	2			
II.5	SG 模型についての逆問題			
II.6				
II.7	光円錐座標における SG 模型			
II.8	2 次元の補助空間を持つ普遍的可積分模型としての LL 方程式 .			
II.9	注釈と文献解説		169	
第 III 章 格子上の基本模型 179				
III.1	準周期的な場合の戸田模型の完全可積分性	٠	179	
III.2	2 急減衰の場合の戸田模型に対する補助的線形問題	£.,	183	
III.3	3 急減衰の場合における戸田模型の逆問題とソリトン力学		195	
III.4	1 急減衰の場合における戸田模型の完全可積分性		204	
III.5	5 2 次元補助空間を持つ普遍的可積系としての格子 LL 模型		212	
III.6	3 注釈と文献解説	• •	222	
第 IV 章	🗈 可積分模型の分類と解析に対するリー代数の方法		227	
IV.1	カレント代数により生成される基本ポアソン括弧		227	
IV.2	2)			
IV.3	3 格子上の基本ポアソン括弧		245	

vi 目 次

IV.4	ゼロ曲率表示の幾何学的解釈とリーマン問題の方法	 248
IV.5	NS 模型で例示された一般スキーム	 263
IV.6	注釈と文献解説	 271
あとがき		283
訳者あとお	がき。 総第一の先野衣郷祭代制国	285
記号索引		287
事項索引		291

上巻の内容

序論

第1部 非線形シュレーディンガー方程式 (NS 模型)

第 I 章 ゼロ曲率表示

NS 模型の定式化/ゼロ曲率の条件/準周期的な場合におけるモノドロミー行列の性質/局所的な運動の積分/急減衰の場合におけるモノドロミー行列/遷移係数の解析性/遷移係数の力学/有限密度の場合:ヨスト解/有限密度の場合:遷移係数/有限密度の場合:時間的発展と運動の積分/注釈と文献解説

第 II 章 リーマン問題

急減衰の場合:リーマン問題の定式化/急減衰の場合:リーマン問題の考察/NS模型への逆散乱問題の応用/リーマン問題の方法とゲルファント-レヴィタン-マルチェンコ方程式/急減衰の場合:ソリトン解/有限密度の場合に対する逆問題の解:リーマン問題の解法/有限密度の場合に対する逆問題の解:GLM 定式/有限密度の場合に対するソリトン解/注釈と文献解説

第 III 章 ハミルトンの定式化

基本ポアソン括弧と R 行列/準周期的な場合における運動の積分のポアソン対合性/基本ポアソン括弧からゼロ曲率表示の導出/急減衰の場合および有限密度の場合における運動の積分/ Λ 演算子とポアソン構造の階層性/急減衰の場合における遷移係数のポアソン括弧/急減衰の場合についての作用—角変数/ハミルトンの観点からのソリトン力学/有限密度の場合における完全可積分性/注釈と文献解説

記号索引/事項索引