目 次

第1		5000000000000000000000000000000000000	
1	危険集	物の概念	3
	1-1	危険物とは	3
	1-2	危険物の分類	3
2	災害の	の実態	9
	2-1	労働災害	9
	2-2	危険物災害	11
	2-3	高圧ガス災害	11
	2-4	リスクベースによる災害統計	12
		2-4-1 労働災害リスク	13
		2-4-2 危険物災害リスク	14
3	安全为	対策	17
	3-1		
	3-2		
	3-3		
		3-3-1 本質安全技術	
		3-3-2 化学物質の危険性評価法	
		3-3-3 リスク・アナリシス	23
		3-3-4 ヒヤリ・ハット解析	
		3-3-5 設備診断技術	
		3-3-6 KYK ·····	28
筆2	2部 物	n理的潜在危険性 ····································	31
4		および液体の可燃性	
_	4-1		
		0.15.5/11 = 0.00(200)	00

		4-1-1 引火点と可燃限界の関係33
		4-1-2 可燃範囲図37
		4-1-3 引火温度範囲図39
		4-1-4 引火点または可燃限界の測定40
	4-2	引火点および可燃限界に関する諸法則41
		4-2-1 引火点と沸点,燃焼熱などとの関係41
		4-2-2 可燃下限界濃度に関する経験則41
		4-2-3 多成分系の可燃下限界濃度43
	4-3	高引火点物質の爆発火災44
5	熱反応	5危険47
	5-1	発火47
	5-2	発火理論48
		5-2-1 セミョーノフの理論48
		5-2-2 フランク・カメネッスキーの理論50
		5-2-3 発火の挙動
	5-3	発火源
		5-3-1 電気的発火源
		5-3-2 熱的発火源
		5-3-3 化学的発火源65
		5-3-4 機械的発火源68
	5-4	反応暴走74
		5-4-1 断熱温度上昇75
		5-4-2 TMR ······76
		5-4-3 SADT78
		5-4-4 精確な評価79
	5-5	発火源管理と予防対策80
6	爆発	83
	6-1	爆発の概念83
	6-2	ガス爆発83
		6-2-1 爆発圧力84

		6-2-2	デトネーション89
		6-2-3	ファイヤボール91
	6-3	粉じん爆	暴発と噴霧爆発 100
		6-3-1	粉じん爆発の特性100
		6-3-2	粉じん爆発特性値の測定104
		6-3-3	粉じん爆発の伝播機構106
		6-3-4	噴霧爆発107
	6-4	蒸気爆乳	£ 108
		6-4-1	熱移動型蒸気爆発108
		6-4-2	平衡破綻型蒸気爆発111
	6-5	爆発への)対応策113
7	反応性	生危険 ·	117
	7-1	自己反応	5性117
		7-1-1	吸熱化合物117
		7-1-2	分子内燃焼化合物118
		7-1-3	有機過酸化物120
		7-1-4	特徴的な原子団を有する化合物123
		7-1-5	潜在危険性の測定124
	7-2	混合危险	₹124
		7-2-1	酸化還元反応127
		7-2-2	特定物質の組合せ130
		7-2-3	吉田による方法131
		7-2-4	混合危険の調べ方132
	7-3	禁水性	133
		7-3-1	アルカリ金属133
		7-3-2	その他の金属134
		7-3-3	有機金属化合物134
		7-3-4	水素化物135
		7-3-5	金属酸化物および金属過酸化物136
		7-3-6	非金属酸化物および酸無水物136
		7-3-7	窒化物,炭化物およびリン化物137

	7-3-8	金属ハロゲン化物138	
	7-3-9	非金属ハロゲン化物とその酸化物138	
	7-3-10	ハロゲン化アシル139	
	7-3-11	その他の禁水性化合物139	
7-4	その他の)反応性危険139	
	7-4-1	パイロフォリック性139	
	7-4-2	蓄熱発火性140	
	7-4-3	過酸化物を生成しやすい化合物142	
	7-4-4	重合反応142	
	7-4-5	テルミット反応146	
7-5	反応性危	:険への対応147	
	7-5-1	反応性危険の評価147	
	7-5-2	プロセス安全148	
付録 1	GHS につ	いて151	
1.	序論 …	151	
2 .	経緯 …	151	
3.	構成 …	152	
4.	まとめ ・	171	
付録 2		霍定方法173	
1.	序論	173	
2.	ARCによ	って SADT の確定は可能か?178	
3.	確定にはか	豆応機構の解明が不可欠183	
4.	微弱反応の	カ SADT の検証方法192	
5.	まとめ ‥	194	
索	引	197	