目 次 vii

目 次

訳者序	····· i
序······	·····iii
表記法と記号・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	·····ix
1章 原子系と光パルスとの相互作用の基礎	1
1.1 基本的な輻射過程	1
1.1.1 自然放出	
1.1.2 誘導放出	3
1.1.3 吸 収	4
1.1.4 遷移確率と熱平衡との関係	
1.1.5 レート方程式	
1.1.6 輻射場と不均一拡がりをもった原子系との相互作用	
1.2 物質中の速い過程	
1.2.1 内部変換と緩和過程	15
1.2.2 光化学反応	19
1.2.3 位相緩和過程	21
1.3 光パルスと原子系との相互作用を記述する基礎方程式	24
1.3.1 波動方程式	
1.3.2 原子系の量子統計論的記述	27
1.3.3 二準位系の取り扱い	30
2章 超短光パルスのためのレーザーの基礎	33
2.1 レーザーの原理	33
2.2 光ポンピングによる分布反転の実現	
2.3 光共振器	
2.3.1 開いた共振器と閉じた共振器	
2.3.2 平面 Fabry-Perot 共振器 ···································	
2.3.3 開いた共振器の回折理論	
2.3.4 Gauss ビームによるレーザー共振器内部および外部の場の記述 …	
2.3.5 三枚反射共振器	
2.4 いくつかの重要なレーザー活性物質	
2.4.1 Nd: YAG レーザー	
2.4.2 アルゴンおよびクリプトン (気体) レーザー ··································	

2.4.3 色素レーザー
2.4.4 半導体レーザー 67
2.5 レーザーの <i>Q</i> -スイッチ ······· 73
2.6 超短光パルス発生の原理:モード同期技術 75
2.7 モード同期の方法······ <i>80</i>
2.7.1 能動モード同期······· 80
2.7.2 同期ポンピング 80
2.7.3 受動モード同期 81
2.8 分布帰還型色素レーザー 82
3章 測定法····································
3.1 高速過程の測定の基本的概念
3.1.1 ストリーク法
3.1.2 ストロボスコピー, サンプリング技術 88
$3.1.3$ 空間的な変位としての時間間隔の測定 \cdots 90
3.1.4 信号の変換 90
3.1.5 相関法······· <i>90</i>
3.2 時間分解能の限界······ 94
3.2.1 回転鏡······ <i>96</i>
3.2.2 光電検出器······ 96
3.2.3 電子光学的ストリークカメラ····· <i>98</i>
3.2.4 集光系99
3.2.5 分散系······· <i>100</i>
3.3 超短光パルス計測のための非線形光学法
3.3.1 第二高調波発生法による強度相関関数の測定
3.3.2 二光子螢光法による強度相関関数の測定
3.3.3 強度交差相関関数の測定······107
3.3.4 レーザー制御光 Kerr ゲート······108
3.4 レーザー制御シャッター
4章 能動モード同期
4.1 動作原理
4.1.1 振幅変調····································
4.1.2 位相変調····································
4.1.3 均一および不均一広がりをもったレーザー遷移
4.2 理 論 ··································
4.3 実験的な研究 ····································
4.3.1 変調器····································

4.3.2 モード同期気体イオンレー);130
	レーザーの実験的研究131
	133
5.1 動作原理	133
	136
	136
5.2.2 定常状態領域の解に関する	義論······ <i>142</i>
	143
	司期領域) $\cdots \cdots 145$
	146
5.2.3 雑音からの超短光パルスの	発生と衛星パルスの発生 <i>147</i>
	150
	152
	な設計······152
	パラメータの実験的研究 <i>157</i>
	160
5.3.4 増幅	162
6章 色素レーザーの受動モード同]期164
6.1 動作原理	164
	167
	167
	172
	172
	174
6.2.3 受動モード同期における反	
パルス間のコヒーレントな	相互作用の影響177
	177
	182
	ープの発生とチャープの補償 <i>183</i>
	間の影響
	188
	レーザー188
	†185
	190
	198
6.3.5 ハイブリッド(混成)モー	ド同期198

0.0.0 · д тщ	100
7章 固体レーザーの受動モード同期	200
7.1 動作原理	200
7.2 理 論	
7.2.1 基礎方程式	
7.2.2 パルス成長の線形相(領域 I) · · · · · · · · · · · · · · · · · ·	207
7.2.3 パルス形成の非線形相(領域 II) · · · · · · · · · · · · · · · · · ·	
7.2.3.1 増幅媒体の占有分布密度における変化の無視・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
7.2.3.2 増幅媒体の中での増幅涸渇の影響・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	214
7.2.3.3 良いモード同期の必要条件:パルス形成の破綻および	
ダブルパルス発生の可能性 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	218
7.2.4 利得涸渇(領域III)	224
7.3 実験装置と結果	
7.3.1 受動モード同期固体レーザーの装置と特徴	
7.3.2 受動モード同期固体レーザーの性質	228
7.3.3 単一パルス選択と増幅	230
7.3.4 超短パルスの発生過程の研究	
7.3.5 吸収体と増幅媒質の有効断面積の影響	
7.3.6 超短パルス形成に対する吸収体の緩和時間の影響	
7.4 半導体レーザー	237
8 章 非定常非線形光学過程	241
8.1 第二高調波発生	
8.2 周波数変換のための非線形光学過程の応用	
8.2.1 周波数混合	
8.2.2 光パラメトリック発生	
8.2.3 パラメトリック四光子相互作用	
8.2.4 光整流とチェレンコフ輻射	
8.2.5 誘導ラマン散乱······	260
8.3 パルス波形とパルス幅を制御するための非共鳴光学過程	264
8.3.1 非線形光学的相互作用による整形	
8.3.2 線形媒質中の位相変調パルスの圧縮	266
8.3.3 分散の無い非線形光学媒質中でのパルス伝播	269
8.3.4 分散性非線形光学媒質	
8.4 共鳴非定常過程	276
8.4.1 光章動と光自由誘導減衰	
8.4.2 フォトンエコー	280

x 目 次

8.4.3 自己誘導透過····································
9 章 超高速分光法
9.1 螢光測定287
9.1.1 ナノ秒技術······· <i>287</i>
9.1.2 ピコ秒技術······ <i>290</i>
9.1.3 増 幅······· <i>292</i>
9.1.3.1 色 素
9.1.3.2 配向緩和の影響 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
9.1.3.3 生体物質295
9.1.3.4 固 体
9.2 プローブパルス分光法296
9.2.1 プローブパルス分光法296
$9.2.1.1$ 単一パルス励起によるプローブパルス分光計 $\cdots\cdots\cdots\cdots\cdots\cdots$ 297
9.2.1.2 高い繰り返し周波数をもったプローブパルス分光計301
$9.2.1.3$ ラマン利得を測定するためのプローブパルス分光計 \cdots
9.2.1.4 自己誘起回折格子を用いたプローブパルス分光計 ·························303
9.2.2 応 用304
9.2.2.1 電子緩和過程
9.2.2.2 振動緩和過程 ······ 305
9.2.2.3 選択励起307
文 献309
索 引