目 次

まえがき

I 放射能

1. 原爆から水	爆へ	3
§.1 原爆の効	果	3
§.2 水爆とは	何か	6
§.3 リチウム	爆弾	9
§.4 放射線の	怖ろしさ1	1
2. ビキニの灰	その基礎的事実1	6
	·爆弾の構造について1	
	化リチウム 6 +原爆1	
(2) 水素化	リチウム7+原爆1	8.
§.2 死の灰の	放射能について2	1
§.3 放射能の)影響2	8
(1) 日本漁	業に対する影響	28
(2) 放射能	戦争の可能性2	29
(3) 大気の	汚染	30
3. 放射能雨 c)成分と効果	32
)雨	
§.2 天然の放	女射能	33
§.3 水爆の人	【工放射能とその最大許容量	36
	雨と農作物	
§.5 空気中の	○放射能	1 5
§.6 放射能@	D塵のその他の影響	16
§.7 原子力系	発電と放射能の灰	1 6
	び	

4. ウ	ラニウム超爆弾50
$\S.1$	超爆弾説の登場50
$\S.2$	果して超爆弾か54
§. 3	高エネルギー核分裂56
$\S.4$	戦術原爆60
§. 5	明日ではおそすぎる61
5. ア	メリカ原子力委員会の報告書63
6. 放	射能は消せないか68
§.1	長い寿命の放射能68
$\S.2$	短命の放射能70
Ⅱ 素	粒 子
1. 反	陽子(アンチ・プロトン)の発見75
§.1	反陽子のエネルギー75
$\S.2$	ディラック方程式――確めた電子・陽電子対76
2. 新	素粒子の群像――反陽子の発見をめぐって80
§.1	反陽子の意味するもの80
§.2	新粒子の研究83
$\S.3$	重核子の性質84
$\S.4$	重中間子の性質86
§. 5	重核子と重中間子の対発生89
§.6	カスケード粒子――2段崩壊粒子95
§.7	4 粒子を含む核破片99
§.8	反 核 子 102
3. 素	粒子論の応用 106
Ⅲ 原	子力の平和的利用
1. 原	子力発電 111
8.1	#

§.2 原子燃焼 ····································	115
§.3 原 子 炉	
(1) 石 墨 炉	120
(2) 增 殖 炉	127
§.4 発電の計画 ·······	
§.5 原子力電池 ·······	133
2. 熱原子核反応は産業に利用できるか	13 5
§.1 熱核反応とは何か	
§.2 融合核反応の工業的利用は可能か ·······	
(1) 超高温発生装置による方法	
(2) サイクロトロンによる方法	144
§.3 融合核反応のエネルギー産出額	
3. 世界の原子力の平和的利用	
4. 英国の原子力発電	
§.1 緒 言 ······	156
§.2 最初のパイル, ベポ BEPO	157
§.3 Risley	160
§.4 Calder Hall および 21 世紀までの計画	165
5. ソ連の原子力発電	
6. 科学者の良心	
日本学術会議第 17 回総会決議	
原子力問題についての国内声明	180
対 外 宣 言	181
附表 1. ウラニウムの分裂によって生ずる元素の	
一覧表	
2. 放射性元素の半減期の分布	