目 次

	まえ	がき・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	ix
	訳者	まえがき ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	xiii
1	はじ	めに	1
	1.1	凝縮系の物理学・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	1
	1.2	ひとつの例 — H_2O · · · · · · · · · · · · · · · · · · ·	3
		1. 気体と液体	3
		2. 液体-気体相転移	3
		3. 液体状態における空間的相関・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	6
		4. 氷 — 水の結晶 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	7
		5. 対称性の破れと剛性・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	9
		6. 転位 — トポロジカルな欠陥 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	11
		7. この例-水-の普遍性・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	12
		8. 揺らぎと空間の次元・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	15
		9. この本の内容について	15
	1.3	エネルギーとポテンシャル・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	16
		1. エネルギーの尺度・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	16
		2. ファンデルワールス引力 · · · · · · · · · · · · · · · · · · ·	17
		3. 水素分子 — ハイトラー-ロンドンの方法 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	19
		4. 剛体球の反発 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	21
		5. 交換相互作用と磁性・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	23
		6. 水素分子、分子軌道、そして金属のバンド構造・・・・・・・・・・・・	24
	参考	図書·参考文献 · · · · · · · · · · · · · · · · · · ·	26
2	州州石石。	の構造と散乱	07
4	2.1	が構造と似乱 散乱理論の初歩 – ブラッグの法則 · · · · · · · · · · · · · · · · · · ·	27
	2.1	フォトン、中性子、電子・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
	2.2		
			32
	2.4		36 37
	2.5		37 40
	2.0		77 190
		1. 学证旭C但按借于・・・・・・・・・・・・・・・・・・・・・・・・・・・	40

iv

		2.	逆格子 ・・・・・・・・・・・・・・・・・・・・・・ 43
		3.	周期関数 · · · · · · · · · · · · · · 44
		4.	ブラッグ散乱 ・・・・・・・・・・・・・・・ 44
	2.6	対	称性と結晶構造 · · · · · · · · · · · · · · · · · · ·
		1.	2 次元ブラベー格子・・・・・・・・・・・・・・・・ 47
		2.	3 次元ブラベー格子・・・・・・・・・・・・・・・ 51
		3.	最密構造
		4.	空間群
	2.7	液	晶 ・・・・・・・・・・・・・・・・・・・・・・・・・・・ 54
		1.	等方相, ネマティック相, コレステリック相 ・・・・・・・ 55
		2.	スメクティック A 相 およびスメクティック C 相・・・・・・・・・ 61
		3.	ヘキサティック相 ・・・・・・・・・・・・・・・・・ 63
		4.	ディスコティック相・・・・・・・・・・・・・・・・・ 66
		5.	リオトロピック液晶とマイクロエマルション ・・・・・・・・・ 68
	2.8	3₺	大元物質の1次元秩序と2次元秩序 ・・・・・・・・・・・・・・ 72
	2.9	不	整合構造 75
	2.10	準;	結晶 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 79
	2.11	磁	気秩序・・・・・・・・・・・・・・・・・・・・・・・・・ 82
	2.12	ラ	ンダム等方フラクタル ・・・・・・・・・・・・・・・・・ 88
	付録	2A	. フーリエ変換 ・・・・・・・・・・・・・・・・・・・・ 94
		1.	1 次元 · · · · · · · · · · · · · · · · · ·
		2.	d 次元 · · · · · · · · · · · · · · · · · ·
		3.	格子上の関数の変換 ・・・・・・・・・・・・・・・ 97
	参考	図書	書·参考文献 ······ 99
	問題		
_	±6_L	عد.	±> 1.07
3		-	および 統計力学 107
	3.1		質流体の熱力学・・・・・・・・・・・・・・・・・・・・・・ 10'
		1.	熱力学第1法則 · · · · · · · · · · · · · · · · · · ·
		2.	熱力学第2法則 · · · · · · · · · · · · · · · · · · ·
		3.	熱力学第3法則 · · · · · · · · · · · · · · · · · · ·
		4.	熱力学ポテンシャル・・・・・・・・・・・・・・・・・・・・・ 11:
		5.	安定性の判定条件・・・・・・・・・・・・・・・・・・ 113
		6.	斉次関数······ 118
		7.	状態方程式 110

目 次 v

	3.2	統計力学: 位相空間および統計集団 ・・・・・・・・・・・・・ 117
	3.3	理想気体・・・・・・・・・ 122
	3.4	古典系における空間相関・・・・・・・・・・・・ 123
	3.5	秩序系・・・・・・・・・・ 127
	3.6	対称性、秩序パラメータおよびモデル・・・・・・・・・・ 133
		1. 離散的対称性
		2. 連続的対称性 · · · · · · · · · · · · · · · · · · ·
		3. モデル・・・・・・・・・・・・・・・・・・・・ 139
		3A 汎関数微分······· 141
		図書·参考文献 · · · · · · · · · · · · · · · · · · ·
	問題	
Į.	平均	場理論 144
	4.1	ブラッグ-ウィリアムス理論 ・・・・・・・・・・・・・・・・ 146
	4.2	ランダウ理論 ・・・・・・・・・・・・・・・・・・・・・ 151
	4.3	イジングモデルと n 成分モデル \cdots \cdots 153
		1. 非局所的な磁化率と相関距離・・・・・・・・・・・・・ 156
		2. O _n 対称性 · · · · · · · · · · · · · · · · · · ·
		3. 他の平均場相転移・・・・・・・・・・・・・・・・・ 158
	4.4	液体-気体相転移 161
		1. 臨界点と臨界等積線・・・・・・・・・・・・・・・ 164
		2. 共存曲線・・・・・・・・・・・・・・・・・・・・・ 166
	4.5	ネマティック相-等方相 1次相転移・・・・・・・・・・・ 169
	4.6	多重臨界点 174
		1. 3 重臨界点 174
		2. メタ磁性体と FeCl ₂ ・・・・・・・・・・・ 176
		3. He ³ -He ⁴ 混合系 および Blume-Emery -Griffith モデル · · · · · · · · 182
		4. 2 重臨界点 および 4 重臨界点 · · · · · · · · · · · · · · · · · · ·
		5. リフシッツ点 ・・・・・・・・ 186
	4.7	液体-固体相転移 189
		1. すべての結晶は BCC 構造をとるか? ······ 191
		2. 凝固の判定条件・・・・・・・・・・・・・・・・・・・・ 194
		3. 理論の改良 · · · · · · · · · · · · · · · · · · ·
		4. 密度の変化 · · · · · · · · · · · · · · · · · · ·
		5. 密度汎関数理論 · · · · · · · · · · · · · · · · · · ·

	4.8	変分法的平均場理論 · · · · · · · · · · · · · · · · · · ·
		1. 2つの不等式・・・・・・・・・・・・・・・・ 200
		2. 平均場近似 · · · · · · · · · · · · · · · · · · ·
		3. s 状態ポッツモデル・・・・・・・・・・・・・・・・・・ 203
		4. O_n 対称の古典ハイゼンベルグモデル ・・・・・・・・・・・ 205
		5. デバイ-ヒュッケル理論・・・・・・・・・・・・・・・・・ 206
	参考	図書·参考文献 · · · · · · · · · · · · · · · · · · ·
	問題	212
5		理論, 臨界現象, くりこみ群 216
	5.1	平均場理論の破綻・・・・・・・・・・・・・・・・・ 217
		1. 平均場近似の転移 再考・・・・・・・・・・・・・ 219
	5.2	場の理論の構築 ・・・・・・・・・・・・・・・・・・ 220
		1. 粗視化 · · · · · · · · · · · · · · · · · · ·
		2. 格子場の理論とその連続体極限 222
		3. ガウス積分 ・・・・・・・・・・・・・・・・・ 224
		4. 関数積分による平均場理論・・・・・・・・・・・ 227
		5. 平均場理論の破綻 再考・・・・・・・・・・・・・・ 228
	5.3	自己無撞着場近似 · · · · · · · · · · · · · · · · · · ·
		1. $n \to \infty$ の極限での n 成分モデル・・・・・・・・・・・・ 232
	5.4	臨界指数, ユニバーサリティ, スケーリング・・・・・・・・・・ 233
		1. 臨界指数とスケーリング関係式 234
		2. スケールされた状態方程式・・・・・・・・・・・・ 238
		3. 多重臨界点 · · · · · · · · · · · · · · · · · · ·
		4. 臨界振幅の比 · · · · · · · · · · · · · · · · · · ·
		5. 臨界指数と臨界振幅の理論的計算 · · · · · · · · · · · · · · · · · · ·
	5.5	カダノフ変換 ・・・・・・・・・・・・・・・・・・・ 241
	5.6	1 次元イジングモデル ・・・・・・・・・・・・・・・ 247
		1. 厳密解 · · · · · · · · · · · · · · · · · · ·
		2. 縮約とくりこみ ・・・・・・・・・・・・・・・・・ 250
	5.7	ミグダル-カダノフの方法 ・・・・・・・・・・・・・・・・ 254
		1. 超立方格子上のイジングモデル ・・・・・・・・・・・・・ 254
		2. 漸化式の一般的性質・・・・・・・・・・・・・・・・ 259
		3. ポッツ格子気体とグラファイト上のクリプトン・・・・・・・ 260
	5.8	運動量空間のくりこみ群 ・・・・・・・・・・・・・・・・・ 262

		目次 vii	i
		1. 自由度の逓減とスケール変換············ 26	2
		2. 相関関数 · · · · · · · · · · · · · · · · · ·	7
		3. ガウス型モデル・・・・・・・・・・・・・・ 26	8
		4. ε 展開法 · · · · · · · · · · · · · · · · · · ·	9
		5. 立方異方性をもつ n 成分モデル · · · · · · · · · · · · · · · · · · ·	4
		6. 2次の異方性・・・・・・・・・・・・・・・・・・ 27	7
		7. クロスオーバー ・・・・・・・・・・・・・・・ 27	7
		8. 危険な無意味な変数・・・・・・・・・・・ 28:	1
		9. ϵ 展開の効能・・・・・・・・・・・・・・・・・ 28	3
	付録	5A Hubbard-Stratonovich 変換 · · · · · · · · · · · · · · · · · ·	4
	付録	5B ダイアグラムによる摂動論 · · · · · · · · · · · · · · · 285	5
	参考	図書·参考文献 · · · · · · · · · · · · 29:	1
	問題		2
	704 Lu		
j		論の一般化 297	
	6.1	xy モデル・・・・・・・・・・・・・・・・・・・・・ 298	
		1. 弾性自由エネルギー・・・・・・・・・・・・・ 298	3
		2. 境界条件と外場・・・・・・・・・・・・・・・ 300	_
		3. ジョセフソンのスケーリング関係 302	
		4. 揺らぎ・・・・・・・・・・・・・・・・・・・・ 302	
		5. 長距離秩序, 準長距離秩序, 無秩序 · · · · · · · · · · · · · · · · · · ·	
		 伝導媒質の抵抗値・・・・・・・・・・・・・・・・・306 	3
	6.2	O_n 対称性とネマティック液晶 \cdots 30%	
		 n ベクトルモデルの弾性エネルギー・・・・・・・・・ 30% 	
		2. ネマティック液晶のフランク自由エネルギー ・・・・・・・・ 308	
		3. \mathbf{n} が一様でないセルの場合 · · · · · · · · · · · · · · · · · · 310)
		4. フレデリクス転移・・・・・・・・・・ 312	2
		5. ツイスト ネマティック ディスプレイ ・・・・・・・・・ 314	
		6. 揺らぎと光反射 ・・・・・・・・・・・・・・・ 316	3
	6.3	スメクティック液晶・・・・・・・・・・・・・・・・・・ 318	
		1. 弾性自由エネルギー・・・・・・・・・・・ 319)
		2. 揺らぎ ・・・・・・・・・・・・・・・・・・・・ 323	3

4. ネマティック-スメクティック A 転移・・・・・・・・・・ 3266.4 固体の弾性理論: 歪みと弾性エネルギー・・・・・・・・・・ 327

3. 非線形性

索	31		xv
	問題		360
	参考	図書	· 参考文献 · · · · · · · · · · · · · · · · · · ·
	6.7	非統	線形シグマモデル ・・・・・・・・・・・・・・・・・・・・ 353
		3.	オイラー応力テンソル ・・・・・・・・・・・・・ 350
		2.	応力と歪みの関係・・・・・・・・・・・・・・・ 349
		1.	ラグランジュ応力テンソル・・・・・・・・・・・・・・ 346
	6.6	固值	体の弾性理論: 応力テンソル・・・・・・・・・・・・・・ 34 6
		2.	古典的調和格子の弾性理論・・・・・・・・・・・・・・ 344
		1.	古典的弾性理論 · · · · · · · · · · · · · · · · · · ·
	6.5	ラク	グランジュの弾性理論 ・・・・・・・・・・・・・・・・・・・ 341
		9.	密度汎関数理論による弾性定数
		8.	ボンド角秩序と回転および並進弾性 340
		7.	空孔と侵入型原子・・・・・・・・・・・・・・ 338
		6.	グラファイト上のキセノン — 2次元結晶・・・・・・・・・ 336
		5.	水銀鎖塩 — 1 次元結晶 · · · · · · · · · · · · · · · · · · 333
		4.	揺らぎ・・・・・・・・・・・・・・・ 332
		3.	等方性および立方対称の固体・・・・・・・・・・ 330
		2.	弾性自由エネルギー・・・・・・・・・・・・・ 328
		1.	歪みテンソル ・・・・・・・・・・・・・・・・・ 327

下巻の内容

- 7 ダイナミックス: 相関と応答
- 8 流体力学
- 9トポロジカルな欠陥
- 10 分域壁・キンク・ソリトン