第1章	1900 年当時の物理学 —————	— 1
	1 科学者たちの社会 3	
	2 物理学者の育成 9	
	3 研究を主とする物理学者 18	
	4 研究の支援 21	
	5 黑体放射 23	
	6 実 験 施 設 26	
	7 世界像について 32	
	8 現代物理学の種子となったもの 40	
第2章	原子と原子核の導入 ———— 第1部 原 子 47	- 47
	1 は じ め に 47	
	2 変遷の10年:1895-1905年 56	
	3 放射能: 1896-1905 年 60	
	4 原子の構造:1897-1906 年 67	
	5 量子物理学の誕生 67	
	6 ニールス・ボーア——量子力学の父 77	
	7 最初は吉報:前期量子論の新たな成功 94	
	8 今度は凶報:古い量子論の危機 107	
	第 2 部 原 子 核 109	

	F-1	
VIII	目	次
XIV		

	9 ベータ線分光学, 1906-14年 109	
	10 核モデル,始まり 115	
	11 1926-32年,原子核の逆理の数々 121	
	12 中 性 子 126	
	13 ベータ線スペクトル,はじめの終わり 133	
	14 核 分 裂 137	
第 3 章	量子と量子力学 —————————————————15	51
	1 は じ め に 151	
	2 量子――その経験的な基礎(1900-28) 153	
	3 量子力学の起源と完成(1913-29) 181	
	4 ミクロ物理学の世界(1925-35) 217	
第 4 章	相対性理論の歴史 —————25	59
	1 は じ め に 259	
	2 特殊相対性理論 263	
	3 一般相対性理論 295	
	4 統一場の理論 330	
第 5 章	核力,中間子,アイソスピン ————— 36	57
	1 1930年頃の物理学 367	
	2 奇跡の年――1932年の新しい物理学 380	
	3 核力の2つの基礎理論 385	
	4 1930年代の宇宙線:QED, シャワー, メソトロン	
	393	
	5 メソトロン,中間子,粒子物理学の誕生 406	
	6 第二次世界大戦中および直後の諸発見 415	
	7 結論 420	

第6章	固体の構造解析――――	431
	1 1912年以前の結晶学と X 線 431	
	2 結晶による X 線回折の発見 434	
	3 実 験 技 術 442	
	4 構造決定の方法 448	
	5 精密構造解析 459	
	6 中性子回折 464	
	7 電子線回折 471	
	8 表面結晶学 474	
	9 不完全結晶と非結晶固体 480	
	10 結晶構造解析の強い影響力 492	
	11 生体分子構造 503	
	12 結晶学国際連合と関連した話題 517	
第7章	熱力学および統計力学(平衡状態)-	527
	1 はじめに――19世紀の背景 527	
	2 量子論の衝撃 530	
	3 体系的理論の発展 536	
	4 熱力学第三法則 540	
	5 相転移と臨界現象 547	
	6 その他の話題 577	
第8章	非平衡統計力学,	
	それは時間発展のさすらい――	589
	1 変化と統合の時代 589	
	2 3つの時期からなる歴史 596	
		G

xvi 目 次

図・写真の出典・謝辞 A1

事 項 索 引 S1

人 名 索 引 N1