目 次

ま	えがき	1
訳	者まえがき	iv
第	1部 正常金属	
1.	周期的結晶格子中の電子	1
	1.1 一般的性質	1
	1.2 強結合近似	9
	1.3 弱く束縛された電子のモデル	12
2.	電子フェルミ液体	18
	2.1 準粒子の考え方	18
	2.2 等方的フェルミ液体中の準粒子	20
	2.3 異方的フェルミ液体	26
	2.4 電子比熱	30
3.	電気伝導率と熱伝導率	35
	3.1 波束としての電子	35
	3.2 運動論的方程式	38
	3.3 電気伝導率	42
	3.4 熱伝導率	43
	3.5 平均自由行程の考え方	
	3.6 自由電子気体の電気伝導率と熱伝導率	48
4.	散乱過程	50
	4.1 不純物による散乱	50
	4.2 電子による電子の散乱	53
	4.3 格子振動による散乱	

:	
Vl	

н	ľK

	4.4 ウムクラップ過程61
	4.5 「同位体」散乱
	4.6 近藤効果
5.	金属の電流磁気的性質 80
	5.1 磁場があるときの運動論的方程式 80
	5.2 弱い磁場中での電流磁気効果 85
	5.3 強磁場の場合の電流磁気現象. 閉じた軌跡の場合 89
	5.4 強磁場における電流磁気効果と開いたフェルミ面のトポロジー . 94
	5.5 多結晶の磁気抵抗
6.	熱電気現象と熱磁気現象 105
	6.1 熱電気現象
	6.2 弱い場の中での熱磁気現象112
	6.3 強磁場のもとでの熱伝導と熱電効果
	6.4 熱電能とリフシッツ転移
7.	高周波電磁場中の金属. サイクロトロン共鳴 123
	7.1 正常表皮効果
	7.2 異常表皮効果. 非有効率の概念
	7.3 異常表皮効果. 運動論的方程式の解
	7.4 サイクロトロン共鳴138
	7.5 非線形効果. 電流状態
8.	サイズ効果 156
	8.1 サイクロトロン共鳴軌道の切断
	8.2 サイクロトロン共鳴における高周波電磁場の内部拡散 159
	8.3 非共鳴サイズ効果
	8.4 傾いた場での非共鳴サイズ効果
	8.5 ゾンドハイマー効果166
	8.6 高周波場のドリフト収斂
	8.7 開いた軌跡でのサイズ効果
9.	磁場があるときの電磁波の伝搬 174
	9.1 電子とホールの数が違うときの金属中のヘリコン174
	9.2 電子数とホール数の等しいときの金属中の磁気プラズモン波177

目次

9.3 実験的研究	. 181
10. 磁化率とドハース-ファンアルフェン効果	185
10.1 パウリのスピン常磁性	. 185
10.2 磁場中での自由電子の準位の量子化	. 186
10.3 ランダウ反磁性	. 188
10.4 任意のスペクトルに対するエネルギー準位の準古典的量子化	. 191
10.5 ドハース-ファンアルフェン効果	. 194
10.6 反磁性分域	. 203
10.7 磁気貫通	. 209
11. 伝導率における量子効果	215
11.1 シュブニコフ-ドハース効果	. 215
11.2 ホッピング軌道におけるサイクロトロン共鳴	
11.3 伝導率への干渉補正	
11.4 磁場中での干渉効果	
11.5 電子相互作用による状態密度と伝導率への量子補正	. 234
11.6 アンダーソン局在.金属-絶縁体転移	
11.7 メゾスコピック系	. 245
12. 金属の音波吸収	249
12.1 磁場のないときの吸収係数. 低周波の場合	. 249
12.2 磁場がないときの吸収係数. 高周波の場合	
12.3 幾何学的共鳴	
12.4 磁気音響共鳴現象	
12.5 幾何学的共鳴の定量的理論	
12.6 磁気音響共鳴の定量的理論	
12.7 音波の非線形吸収.磁場の効果...........	
12.8 磁場中での準位の量子化による音波吸収の巨大振動	
13. フェルミ液体効果	282
13.1 準粒子相互作用	. 282
13.2 ランダウ関数	
13.3 常磁性磁化率における準粒子相互作用の役割	
13.4 ランダウの量子化と量子振動	
13.5 ゼロ (高周波) 音波	

viii	目次
13.6 スピン波	
14. 金属の電子スペクトル計算法14.1 直交化された平面波法	. 318
付録 I. 強磁性金属モデル	334
付録 II. 2 次の相転移	340
付録 III. 磁場内の熱力学	35 4
(下 巻)	
第2部 超伝導金属	
15. 超伝導の巨視的理論	
16. 微視的理論の基礎になる考え方	
17. ギンツブルグ-ランダウ理論	
18. 第 2 種超伝導体	
19. 超伝導体の運動学	
20. 超伝導体と正常金属の境界面	
21. 超伝導と磁性	
22. トンネル接合, ジョセフソン効果	
文献索引	
参考書籍	
事項索引	

