

目 次

まえがき

1	序	論		••••••					i
1	l-1 (はじめに	<u>-</u>		••••••			•••••	į
1	l-2 }	表面の対称	*性とその記	2法	•••••				4
	1-2-		問期格子の対						
	1-2-		と2次元ブリ						
	1-2-	3 結晶表面	面の原子配列	」の記法 ⋯	••••••	• • • • • • • • • • • • • • • • • • • •		•••••	8
2	表面	面における	る電子	•••••					! 1
2	2-1	バンド理論	ああらまし	,		• • • • • • • • • • • • • • • • • • • •	•••••		1
2	2-2	表面におけ	る電子波と	- その分類					!6
2	2-3	表面電子場	態の計算法	ţ				2	23
	2-3-	1 モデル。	と計算法の分	類	•••••			2	:3
	2-3-	2 局所密	度汎関数法		••••••	• • • • • • • • • • • • • • • • • • • •		2	25
2	C-4 f	士事関数	(• • • • • • • • • • • • • • • • • • • •		2	8
2	?-5 ₹	表面の電子	状態——表	面状態					3
	2-5-	1 タムガ	態			• • • • • • • • • • • • • • • • • • • •		3	3
			フレー状態 ·						
			リングボンド						
	2-5-	4 鏡映力表	長面状態 …	•••••	••••••	• • • • • • • • • • • • • • • • • • • •	•••••	4	1
2	-6 ₹	長面の電子	·状態——数	値計算からり	見た価電子の	ふるまい・		4	2
3	表面	面電子状態	まをさぐる			•••••		4	7
3	-1)	光電子分光	法のあらま	:し		• • • • • • • • • • • • • • • • • • • •	•••••	4	7
3	د 2-2	その他の雷	子分光法					5	3

3-2-1 オージェ電子分光法53
3-2-2 電子線損失分光法 ······55
3-2-3 イオン中和分光法
3-2-4 不安定原子脱励起分光法
4 表面構造の特徴
4-1 緩和とランプリング61
4-1-1 緩 和61
4-1-2 ランプリング62
4-2 再構成構造とその起源63
4-2-1 半導体表面の再構成構造63
4-2-2 遷移金属および貴金属表面の再構成構造71
4-2-3 極性表面の再構成構造74
と、本子供サナナルフ
5 表面構造をさぐる····································
5-1 低速電子線回折
5-2 原子線・分子線回折81
5-3 イオン散乱分光85
5-4 電界イオン顕微鏡88
5-5 走査トンネル顕微鏡92
6 原子・分子の吸着99
6-1 物理吸着
6-2 化学吸着
6-3 化学吸着——電子状態の定量計算
6-3-1 クラスター模型
6-3-2 ジェリウム表面上の吸着 111
6-3-3 有効媒質法
6-4 解離吸着
6-4-1 解離吸着とは? 115
6-4-2 重なりの電子数とボンドオーダの 2 乗和則 116
6-4-3 断熱ポテンシャル面
6-4-4 ジェリウム表面上の水素分子の吸着

6	6-4-5	軌道対称性の適合と活性障壁	1
6	6-4-6	解離吸着における d 電子の役割 12:	3
6	3 -4 -7	CO 分子の解離吸着······ 12:	5
6-5	5 吸	着子間相互作用と吸着層の性質	6
(6-5-1	吸着子間相互作用	7
(6-5-2	アルカリ単原子吸着層	9
7	動的	勺 過 程⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 13	3
7-:	1 動	的現象を支配するもの 13	3
7-2	2 大	域的ポテンシャル面の構成法	4
7-3	3 剛	体表面上の反応過程のトラジェクトリー	7
7-	4 ス	トキャスティック・トラジェクトリー法14	ю
7-	5	3着と脱離の動力学	14
	7-5-1	エネルギー散逸	14
	7-5-2	2 付着確率	18
	7-5-3	3 脱離速度	50
	7-5-4	4 非断熱過程によるエネルギー散逸	54
7-	6 電	3子移動と準位交差の諸問題	58
	7-6-1	l 時間に依存するニューンズ模型	58
	7-6-2	2 広いバンドの極限	50
	7-6-3	3 一般のバンドの場合	33
	7-6-4	4 2 準位系の交差とバンド効果	
	7-6-5	5 衝突 He 原子のイオン化過程	39
付録	調	和格子による衝突粒子の散逸エネルギー分布 · · · · · · · · · · · · · · · · · · ·	75
問題	夏略 :	解	77
参考	き文:	献	37
索	;	弓	91