CONTENTS

Chapter 1. The Electrostatic Field in Vacuum 1
1-1 Vector fields 1
1-2 The electric field 7
1-3 Coulomb's law 8
1-4 The electrostatic potential 10
1-5 The potential in terms of charge distribution 11
1-6 Field singularities 13
1-7 Clusters of point charges 13
1-8 Dipole interactions 19
1-9 Surface singularities 20
1-10 Volume distributions of dipole moment 23
Chapter 2. Boundary Conditions and Relation of Microscopic to Macroscopic Fields 28
2-1 The displacement vector 28
2-2 Boundary conditions 31
2-3 The electric field in a material medium 33
2-4 Polarizability 38
Chapter 3. General Methods for the Solution of Potential Problems 42
3-1 Uniqueness theorem 42
3-2 Green's reciprocation theorem 43
3-3 Solution by Green's function 44
3-4 Solution by inversion 47
3-5 Solution by electrical images 49
3-6 Solution of Laplace's equation by the separation of variables 53
Chapter 4. Two-dimensional Potential Problems 61
4-1 Conjugate complex functions 61
4-2 Capacity and field strength 63
4-3 The potential of a uniform field 64
4-4 The potential of a line charge 64
4-5 Complex transformations 66
4-6 General Schwarz transformation 67
4-7 Single-angle transformations 70
4-8 Multiple-angle transformations 71
4-9 Direct solution of Laplace's equation by the method of harmonics 73
4-10 Illustration: Line charge and dielectric cylinder 74
4-11 Line charge in an angle between two conductors 77
Chapter 5. Three-dimensional Potential Problems 81
5-1 The solution of Laplace's equation in spherical coordinates 81
5-2 The potential of a point charge 82
5-3 The potential of a dielectric sphere and a point charge 83
5-4 The potential of a dielectric sphere in a uniform field 84
5-5 The potential of an arbitrary axially-symmetric spherical potential distribution 86
5-6 The potential of a charged ring 87
5-7 Problems not having axial symmetry 88
5-8 The solution of Laplace's equation in cylindrical coordinates 88
5-9 Application of cylindrical solutions to potential problems 91
Chapter 6. Energy Relations and Forces in the Electro- static Field 95
6-1 Field energy in free space 95
6-2 Energy density within a dielectric 98
6-3 Thermodynamic interpretation of U 100
6-4 Thomson's theorem 101
6-5 Maxwell stress tensor 103
6-6 Volume forces in the electrostatic field in the presence of dielectrics 107
6-7 The behavior of dielectric liquids in an electrostatic field 111
Chapter 7. Steady Currents and Their Interaction 118
7-1 Ohm's law 118
7-2 Electromotive force 119
7-3 The solution of stationary current problems 120
7-4 Time of relaxation in a homogeneous medium 122
7-5 The magnetic interaction of steady line currents 123
7-6 The magnetic induction field 125
7-7 The magnetic scalar potential 125
7-8 The magnetic vector potential 127
7-9 Types of currents 129
7-10 Polarization currents 129
7-11 Magnetic moments 130
7-12 Magnetization and magnetization currents 134
7-13 Vacuum displacement current 135
Chapter 8. Magnetic Materials and Boundary Value Problems 139
8-1 Magnetic field intensity 139
8-2 Magnetic sources 140
8-3 Permeable media: magnetic susceptibility and boundary conditions 144
8-4 Magnetic circuits 145
8-5 Solution of boundary value problems by magnetic scalar potentials 146
8-6 Uniqueness theorem for the vector potential 147
8-7 The use of the vector potential in the solution of problems 148
8-8 The vector potential in two dimensions 151
8-9 The vector potential in cylindrical coordinates 153
Chapter 9. Maxwell's Equations 158
9-1 Faraday's law of induction 158
9-2 Maxwell's equations for stationary media 159
9-3 Faraday's law for moving media 160
9-4 Maxwell's equations for moving media 163
9-5 Motion of a conductor in a magnetic field 165
Chapter 10. Energy, Force, and Momentum Relations in the Electromagnetic Field 170
10-1 Energy relations in quasi-stationary current systems 170
10-2 Forces on current systems 172
10-3 Inductance 174
10-4 Magnetic volume force 177
10-5 General expressions for electromagnetic energy 178
10-6 Momentum balance 181
Chapter 11. The Wave Equation and Plane Waves 185
11-1 The wave equation 185
11-2 Plane waves 187
11-3 Radiation pressure 191
11-4 Plane waves in a moving medium 193
11-5 Reflection and refraction at a plane boundary 195
11-6 Waves in conducting media and metallic reflection 200
11-7 Group velocity 202
Chapter 12. Conducting Fluids in a Magnetic Field (MAGNETOHYDRODYNAMICS) 205
12-1 "Frozen-in" lines of force 205
12-2 Magnetohydrodynamic waves 207
Chapter 13. Waves in the Presence of Metallic Boundaries 212
13-1 The nature of metallic boundary conditions 212
13-2 Eigenfunctions and eigenvalues of the wave equation 214
13-3 Cavities with rectangular boundaries 218
13-4 Cylindrical cavities 219
13-5 Circular cylindrical cavities 222
13-6 Wave guides 223
13-7 Scattering by a circular cylinder 226
13-8 Spherical waves 229
13-9 Scattering by a sphere 233
Chapter 14. The Inhomogeneous Wave Equation 240
14-1 The wave equation for the potentials 240
14-2 Solution by Fourier analysis 242
14-3 The radiation fields 245
14-4 Radiated energy 248
14-5 The Hertz potential 254
14-6 Computation of radiation fields by the Hertz method 255
14-7 Electric dipole radiation 257
14-8 Multipole radiation 260
14-9 Derivation of multipole radiation from scalar superpotentials 264
14-10 Energy and angular momentum radiated by multipoles 267
Chapter 15. The Experimental Basis for the Theory of Special Relativity 272
15-1 Galilean relativity and electrodynamics 272
15-2 The search for an absolute ether frame 274
15-3 The Lorentz-Fitzgerald contraction hypothesis 278
15-4 "Ether drag" 279
15-5 Emission theories 280
15-6 Summary 283
Chapter 16. Relativistic Kinematics and the Lorentz Transformation 286
16-1 The velocity of light and simultaneity 286
16-2 Kinematic relations in special relativity 288
16-3 The Lorentz transformation 293
16-4 Geometric interpretations of the Lorentz fransformation 297
16-5 Transformation equations for velocity 301
Chapter 17. Covariance and Relativistic Mechanics 305
17-1 The Lorentz transformation of a four-vector 305
17-2 Some tensor relations useful in special relativity 307
17-3 The conservation of momentum 311
17-4 Relation of energy to momentum and to mass 313
17-5 The Minkowski force 316
17-6 The collision of two similar particles 318
17-7 The use of four-vectors in calculating kinematic relations for collisions 320
Chapter 18. Covariant Formulation of Electrodynamics 324
18-1 The four-vector potential 324
18-2 The electromagnetic field tensor 327
18-3 The Lorentz force in vacuum 331
18-4 Covariant description of sources in material media 332
18-5 The field equations in a material medium 334
18-6 Transformation properties of the partial fields 336
Chapter 19. The Liénard-Wiechert Potentials and the Field of a Uniformly Moving Electron 341
19-1 The Liénard-Wiechert potentials 341
19-2 The fields of a charge in uniform motion 344
19-3 Direct solution of the wave equation 347
19-4 The "convection potential" 348
19-5 The virtual photon concept 350
Chapter 20. Radiation from an Accelerated Charge 354
20-1 Fields of an accelerated charge 354
20-2 Radiation at low velocity 358
20-3 The case of \dot{u} parallel to \mathbf{u} 359
20-4 Radiation when the acceleration is perpendicular to the velocity (radiation from circular orbits) 363
20-5 Radiation with no restrictions on the acceleration or velocity 370
20-6 Classical cross section for bremsstrahlung in a Coulomb field 371
20-7 Cerenkov radiation 373
Chapter 21. Radiation Reaction and Covariant Formulation of the Conservation Laws of Electrodynamics 377
21-1 Covariant formulation of the conservation laws of vacuum electrodynamics 377
21-2 Transformation properties of the "free" radiation field 379
21-3 The electromagnetic energy momentum tensor in material media 380
21-4 Electromagnetic mass 381
21-5 Electromagnetic mass-qualitative considerations 383
21-6 The reaction necessary to conserve radiated energy 386
21-7 Direct computation of the radiation reaction from the retarded fields 387
21-8 Properties of the equation of motion 389
21-9 Covariant description of the mechanical properties of the electromagnetic field of a charge 390
21-10 The relativistic equations of motion 392
21-11 The integration of the relativistic equation of motion 394
21-12 Modification of the theory of radiation to eliminate divergent mass integrals. Advanced potentials 394
21-13 Direct calculation of the relativistic radiation reaction 398
Chapter 22. Radiation, Scattering, and Dispersion 401
22-1 Radiative damping of a charged harmonic oscillator 401
22-2 Forced vibrations 403
22-3 Scattering by an individual free electron 404
22-4 Scattering by a bound electron 407
22-5 Absorption of radiation by an oscillator 407
22-6 Equilibrium between an oscillator and a radiation field 409
22-7 Effect of a volume distribution of scatterers 411
22-8 Scattering from a volume distribution. Rayleigh scattering 414
22-9 The dispersion relation 416
$22-10$ A general theorem on scattering and absorption 419
Chapter 23. The Motion of Charged Particles in Electro- magnetic Fields 425
23-1 World-line description 425
23-2 Hamiltonian formulation and the transition to three- dimensional formalism 427
23-3 Equations for the trajectories 430
23-4 Applications 433
23-5 The motion of a particle with magnetic moment in an electromagnetic field 437
Chapter 24. Hamiltonian Formulation of Maxwell's Equations 446
24-1 Transition to a one-dimensional continuous system 446
24-2 Generalization to a three-dimensional continuum 448
24-3 The electromagnetic field 451
24-4 Periodic solutions in a box. Plane wave representation 454
Appendix I. Units and Dimensions in Electromagnetic Theory 459
Tables: I-1. Conversion Factors 465
I-2. Fundamental Electromagnetic Relations Valid in vacuo as They Appear in the Various Systems of Units 466
I-3. Definition of Fields from Sources (mks system) 468
I-4. Useful Numerical Relations 469
Appendix II. Useful Vector Relations 470
Table II-1. Vector Formulas 470
Appendix III. Vector Relations in Curvilinear Coordinates. 473
Table III-1. Coordinate Systems 475
Bibliography 479
Index 485

