CONTENTS

Preface	9
Notation	12
CHAPTER 1 — BASIC CONCEPTS	1
1.1. Functions	
1.2. Series	
1.3. Abelian summation	
1.4. Lebesgue integral	
1.5. Some formulas for trigonometric functions	
Problems	
CHAPTER 2 — CONCEPT OF A FOURIER SERIES	19
2.1. Solution of the equation of a vibrating string	
2.2. Fourier series of an integrable function	
2.3. Convergence of trigonometric series	
2.4. Convergence of a Fourier series	
Problems	
CHAPTER 3 — HILBERT SPACE	51
3.1. Introduction	
3.2. Concept of a Hilbert space	
3.3. Length of a vector and the distance between two vectors	
in a Hilbert space	
3.4. Complete Hilbert space	
3.5. Orthonormal sequences and the best approximation	
3.6. Orthonormalization	
3.7. Orthogonal systems	
Problems	
Appendix — The space of integrable functions	
Problems	

HILBERT SPACES

4.1. Some properties of the space L_2

4.3. Trigonometric Fourier series with a general period 4.4. Fourier series of functions of several variables				
4.5. Expansions with respect to eigenfunctions				
4.6. Orthogonal polynomials				
Problems				
CHAPTER 5 — CALCULATION OF FOURIER SERIES . 149)			
5.1. Expansions of various functions				
5.2. Expansions of functions defined on an interval of half length				
5.3. Expansions of a non-periodic function				
5.4. Complex and phase forms of the Fourier series				
5.5. Application of various operations with series				
5.6. Application of functions of a complex variable				
5.7. Conjugate series				
5.8. Evaluation of various number series and integrals by means of Fourier series				
Problems				
CHAPTER 6 — APPROXIMATE HARMONIC ANALYSIS 6.1. Introduction 6.2. Krylov's method	5			
6.3. Approximate summation of series				
6.4. Numerical calculation of Fourier coefficients				
Problems				
CHAPTER 7 — SOME SPECIAL CRITERIA FOR CONVERGENCE 225	5			
7.1. Gibbs phenomenon				
7.2. Dirichlet's kernel				
7.3. Continuous periodic functions				
7.4. Principle of localization				
7.5. Absolutely continuous functions 7.6. Functions of bounded variation				
7.7. Fourier coefficients and the properties of the sum				
7.7. Fourier coefficients and the properties of the sum 7.8. Functions in $W_2^{(k)}$				
7.9. Convergence of arithmetic means				
Problems				
1100101115				
λ .				

CHAPTER 4 — SOME SPECIAL FOURIER SERIES IN SPECIFIC

4.2. Trigonometric Fourier series of functions of one variable

101

260

8.5. Fourier transforms of distributions		
Problems		
CHAPTER 9 — EXAMPLES OF THE APPLICATION OF FOURIER SERIES	292	
9.1. Classical solution of the equation for a string 9.2. Generalized solution		
9.3. Decomposition of a tone into harmonics. Vibrations of a tuner		
9.4. Equation of heat conduction		
9.5. Laplace equation		
9.6. Some applications of Fourier series in the theory of integral equations		
9.7. Some applications of Fourier transforms		
Problems		
CHAPTER 10 — SURVEY OF FOURIER SERIES AND FOURIER TRANSFORMS OF SOME COMMONLY USED FUNC-		
TIONS	336	
References	351	
Bibliography		
Index	353	

CHAPTER 8 — FOURIER TRANSFORMS

8.3. Fourier transforms of functions in L_2 8.4. Properties of Fourier transforms

8.2. Inversion formula

8.1. Fourier transforms as a limit case of Fourier series