目 次

著者まえがき 訳者まえがき 凡 例

第1章	古典力学の破綻、古典力学と幾何光学のアナロジー
§ 1.	古典的概念に基づく原子の不安定性
§ 2.	ボーアの理論1
§ 3.	光 量 子
§ 4.	幾何光学と古典力学の対応 5
§ 5.	定位相面6
§ 6.	光学と力学における類似量 8
問	題······10
第2章	電子回折
§ 1.	回折現象の本質11
§ 2.	電子回折12
§ 3.	電子の波長13
§ 4.	古典的な概念の適用限界14
§ 5.	統計的規則性と孤立実験15
§ 6.	不確定性原理16
第3章	波動方程式
§ 1.	波動方程式19
§ 2.	波動方程式の線形性20
§ 3.	自由粒子の波動方程式21
§ 4.	シュレーディンガー方程式22

	§	5.	種々の理論の適用限界24
	§	6.	波動関数の規格化条件24
	§	7.	定常状態の方程式26
第 4	章	Ē ;	量子力学における演算子
	§	1.	運動量固有値28
	§	2.	運動量演算子とエネルギー演算子28
	§	3.	角運動量成分の演算子30
	§	4.	2 つの物理量が同時に確定値をとる場合31
	§	5.	演算子に対する交換関係32
	§	6.	角運動量の2乗34
	§	7.	角運動量の2乗と角運動量成分の固有関数35
	§	8.	シュテルン-ゲルラッハの実験38
	問]	題40
第5	章	Ê	波動関数の展開
	§	1.	重ね合わせの原理 41
	§	2.	エルミート演算子41
	§	3.	固有関数の直交性43
	§	4.	固有関数による展開44
	§	5.	角運動量成分の固有関数展開47
	§	6.	波動関数と物理量の測定48
	§	7.	量子力学における平均値50
	§	8.	$\langle \emph{A}\emph{x} \rangle$ と $\langle \emph{A}\emph{p} \rangle$ に対する不確定性関係の導出 \cdots 51
	問]	題52
第6	章	Ċ :	独立変数の変換
	§	1.	演算子の行列表現54
	§	2.	行列の対角形57
	_		運動量表示への変換60

	§ 4.	ユニタリー変換63
	問	題·····65
第7	章	演算子の行列表現
	§ 1.	行列要素の時間依存性67
	§ 2.	線形調和振動子70
	§ 3.	密 度 行 列73
第8	章	座標表示を用いて表現したいくつかの問題
	§ 1.	1次元の無限に深いポテンシャル井戸の中にある粒子79
	§ 2.	3次元の無限に深いポテンシャル井戸の中にある粒子82
	§ 3.	可能な状態の数の計算84
	§ 4.	有限の深さの1次元ポテンシャル井戸86
	§ 5.	有限運動と無限運動93
	§ 6.	100 M 10
	問	題100
第:	章	中心力ポテンシャル内における運動
	§ 1.	角運動量の2乗と角運動量成分の固有関数(球関数)103
	§ 2.	動 径 関 数107
	§ 3.	クーロン場110
	§ 4.	量 子 数113
	§ 5.	状態の偶奇性115
	§ 6.	角運動量の合成117
	§ 7.	角運動量保存則と偶奇性保存則の同時適用118
	§ 8.	水素類似原子120
	問	題120
第1	0章	電子スピン
	8 1.	電子の固有角運動量. 電子スピン122

§ 2.	角運動量の一般的定義123
§ 3.	角運動量の2乗とその成分の固有値126
§ 4.	電子のスピン変数130
§ 5.	パウリのスピン行列131
§ 6.	パウリ行列のベクトルとしての性質132
§ 7.	電子の全角運動量演算子137
§ 8.	スピン磁気モーメント137
問	題138
補充具	月題140
他巻か	ら引用した式143
什	録 ·······144

----第2巻の内容----

第11章 準 古典近似 第12章 摂 動 論 第13章 多電子系.原子 第14章 二原子分子 第15章 散乱の量子論 第16章 輻射の量子論 第17章 ディラック方程式 補充問題 付 録 総 索 引