CONTENTS

CHAPTER 1 SUPERCONDUCTING MAGNET TECHNOLOGY					•	. 1
1.1 Introductory Remarks						. 1
1.2 Superconductivity						. 3
1.3 Magnet-Grade Superconductors						. 6
1.4 Magnet Design						. 7
1.5 Class 1 and Class 2 Superconducting Magnets						. 9
1.6 The Format of the Book			•	•		. 9
CHAPTER 2 ELECTROMAGNETIC FIELDS						11
2.1 Introduction						11
2.2 Maxwell's Equations						11
2.3 Quasi-Static Case						14
2.4 Poynting Vector						15
2.5 Field Solutions from the Scalar Potentials						16
Problem 2.1: Magnetized sphere in a uniform field						19
Problem 2.2: Type I superconducting rod in a uniform field .						23
Problem 2.3: Magnetic shielding with a spherical shell						26
Problem 2.4: Shielding with a cylindrical shell						32
Problem 2.5: The field far from a cluster of four dipoles						34
Problem 2.6: Induction heating of a cylindrical shell						36
Induction heating—Part 1 (Field)						37
Induction heating—Part 2 (Power Dissipation)						
Problem 2.7: Eddy-current loss in a metallic strip						43
Lamination to Reduce Eddy-Current Loss	٠	•	•	•	•	44
CHAPTER 3 MAGNETS, FIELDS, AND FORCES					•	45
3.1 Introduction						45
3.2 Law of Biot and Savart						45
3.3 Lorentz Force and Magnetic Pressure						46
Problem 3.1: Uniform-current-density solenoids						48
Bitter Magnet						53
Problem 3.2: Bitter magnet						54
Additional Comments on Water-Cooled Magnets						57
Hybrid Magnet						58
Parameters of Hybrid III Superconducting Magnet (SCM) .						59
Problem 3.3: Hybrid Magnet						60
Problem 3.4: Helmholtz coil						62
Problem 3.5: Spatially homogeneous fields						
Problem 3.6: Notched solenoid						67

x Contents

Problem 3.7:	$Ideal\ dipole\ magnet\ \dots\dots\dots\dots$								69
Problem 3.8:	$\it Ideal\ quadrupole\ magnet\ .\ .\ .\ .\ .\ .\ .$								74
Problem 3.9:	Magnet comprised of two ideal "racetracks" .								77
Problem 3.10:	$\emph{Ideal toroidal magnet} \ldots \ldots \ldots \ldots$								84
Nuclear Fusio	n and Magnetic Confinement								86
Problem 3.11:	Fringing field $\ldots \ldots \ldots \ldots$								87
Problem 3.12:	Circulating proton in an accelerator								89
Particle Accel	lerators								89
Problem 3.13:	Magnetic force on an iron sphere								91
•	Fault condition in hybrid magnets 1. Fault-mode forces								95
Vertical Magn	netic Force during Hybrid III Insert Burnout								97
Problem 3.15:	Fault condition in hybrid magnets								
	2. Mechanical support requirements								98
	Fault condition in hybrid magnets								
	3. Fault force transmission								
	Stresses in an epoxy-impregnated solenoid.								
Problem 3.18:	Stresses in a composite Nb_3Sn conductor .	•	•	•	٠	•	٠	٠	105
CHAPTER 4 CRY	YOGENICS								111
4.1 Introduct								•	
• •									111
4.3 Superfluid	•								
Problem 4.1:	Carnot refrigerator			•		•			119
Joule-Thomse									
•	Cooling modes of a magnet								
Problem 4.3:	Optimum gas-cooled leads—Part 1			•	•		•	•	125
	Optimum gas-cooled leads—Part 2							٠	130
Problem 4.4:	Optimum leads for a vacuum environment—								
									137
	Franz-Lorenz Law and Lorenz Number								
•	Gas-cooled support rods								
	aterials for Cryogenic Applications								
	Subcooled 1.8-K cryostat								
	Residual gas heat transfer into a cryostat .								
• •	y Residual Gas: "High" Pressure Limit								
-	y Residual Gas: "Low" Pressure Limit								
Vacuum Pum									
`	ges								
Problem 4.8:	Radiation heat transfer into a cryostat								151

CONTENTS	хi	

Radiation Heat Transfer: Applications to a	Cryostat 151
Effect of Superinsulation Layers	
Practical Considerations of Emissivity	153
Problem 4.9: Laboratory-scale hydrogen (ne	con) condenser 155
Problem 4.10: Carbon resistor thermometers	3 159
Effects of a Magnetic Field on Thermometer	ers 161
CHAPTER 5 MAGNETIZATION OF HARD SUPP	ERCONDUCTORS 163
5.1 Introduction	163
5.2 Bean's Critical State Model	163
5.3 Experimental Confirmation of Bean's M	Model 168
5.4 A Magnetization Measurement Techniq	que 169
Problem 5.1: Magnetization with transport of 1. Field and then transport cu	current
Problem 5.2: Magnetization with transport 2. Transport current and then	current a field 176
Use of SQUID for Magnetization Measurem	
Problem 5.3: Magnetization with transport	
Magnetization Functions – Summary	
Problem 5.4: Critical current density from a	
Contact-Resistance Heating at Test Sample	-
Filament Twisting in Composite Supercond	
Problem 5.10: Flux jump criterion for HTS	
	203
	203
6.3 Cable-in-Conduit (CIC) Conductors .	206
Problem 6.1: Cryostability 1. Circuit model	
Peak Nucleate Boiling Heat Transfer Flux:	Narrow Channels 211
Problem 6.2: Cryostability	
Problem 6.3: Cryostability 3 Stekly criterion	214

xii Contents

Discussion of	Stekly Cryostability Criterion
Problem 6.4:	
	4. Nonlinear cooling curves
$Composite\ Si$	uperconductors: "Monolithic" and "Built-up" 217
Problem 6.5:	Dynamic stability for tape conductors
	1. Magnetic and thermal diffusion
Problem 6.6:	Dynamic stability for tape conductors
	2. Criterion for edge-cooled tapes
Problem 6.7:	"Equal-area" criterion
Problem 6.8:	The MPZ concept
$Problem \ 6.9:$	V vs I traces of a cooled composite conductor
	Stability analyses of Hybrid III SCM
Cryostable v	s Quasi-Adiabatic (QA) Magnets
Problem 6.11:	Stability of CIC conductors
Problem 6.12:	"Ramp-rate-limitation" in CIC conductors 245
Problem 6.13:	MPZ for a composite tape conductor
Problem 6.14:	Stability of HTS magnets
CHAPTER 7 AC	C, SPLICE, AND MECHANICAL LOSSES 261
7.1 Introduct	
7.2 AC Losse	
	esistance
	cal Disturbances
	Emission Technique
Problem 7.1:	Hysteresis loss—basic derivation
F100le111 1.1:	1. Without transport current
Problem 7.2:	Hysteresis loss—basic derivation
1 10000110 1.2.	2. With transport current
Problem 7.3:	Hysteresis loss (no transport current)
	1. "Small" amplitude cyclic field 280
Problem 7.4:	Hysteresis loss (no transport current)
•	2. "Large" amplitude cyclic field
Problem 7.5:	Coupling time constant
Problem 7.6:	Hysteresis loss of an Nb ₃ Sn strand
Problem 7.7:	AC losses in Hybrid III SCM
"Burst Disk"	and Diffuser for Hybrid III Cryostat
Problem 7.8:	AC losses in the US-DPC Coil
Problem 7.9:	Splice dissipation in Hybrid III Nb-Ti coil
Mechanical I	Properties of Tin-Lead Solders
	A splice for CIC conductors
	CIC Splice in a Time-Varying Magnetic Field 304

CONTENTS					xiii
Experimenta Problem 7.12:	Loss due to "index" number				. 307 . 309
	ission Sensor for Cryogenic Environment				
	Conductor-motion-induced voltage pulse				
	Disturbances in HTS magnets				
	ation Anisotropy in BiPbSrCaCuO (2223) Tapes				
	, , <u>-</u>				
0121	OTECTION				
	tory Remarks				
	n for Class 2 Magnets				
	r Simulation				
	Active protection				
Comments or	a Z Functions for Magnet Protection				. 332
$Problem \ 8.2:$	${\it Hot\text{-}spot\ temperatures\ in\ Hybrid\ III\ SCM\ .\ .\ .}$. 333
Problem 8.3:	Quench-voltage detection (QVD) 1. Basic technique using a bridge circuit				. 336
Problem 8.4:	Quench-voltage detection (QVD) 2. An improved technique				. 338
Voltage Atter	nuation in Magnet Protection Circuit				
	Quench-induced pressure in CIC conductors 1. Analytical approach				
Problem 8.6:	Quench-induced pressure in CIC conductors 2. CIC coil for the NHMFL's 45-T hybrid				
Problem 8.7:	Normal-zone propagation (NZP)				
	1. Velocity in the longitudinal direction				. 347
Problem 8.8:	Normal-zone propagation (NZP) 2. Transverse (turn-to-turn) velocity				. 351
Problem 8.9:	Passive Protection of "isolated" magnets 1. Basic concepts				. 355
Problem 8.10:	Passive Protection of "isolated" magnets 2. Two-section test coil				. 358
Problem 8.11:	Passive Protection of "isolated" magnets 3. Multi-coil NMR magnet				. 362
Problem 8.12:	NZP velocity in HTS magnets				
	field HTS magnets operating at 20 K				
		•	•	٠	
	NCLUDING REMARKS	•	٠	•	. 375
	Technology vs Replacing Technology				
9.2 Outlook	for the HTS				. 376

xiv	CONTENTS

APPENDIX I	PHYSICAL CONSTANTS AND CONVERSION FACTORS 3	77
Table A1	1 Selected Physical Constants	77
Table A1	2 Selected Conversion Factors	78
APPENDIX I	THERMODYNAMIC PROPERTIES OF CRYOGENS 3	79
Table A2	1 Helium at 1 Atm	79
Table A2	2 Helium at Saturation	80
Figure A2	1 Isochoric $P(T)$ curves for helium at two densities 3	81
Figure A2	2 Isochoric $u(T)$ curves for helium at two densities 3	82
Table A2	3 Selected Properties of Cryogens at 1 Atm	83
Table A2	4 Heat Transfer Properties of Cryogen Gases at 1 Atm 3	83
APPENDIX I	I PHYSICAL PROPERTIES OF MATERIALS	85
Figure A3	.1 Thermal conductivity vs temperature plots	85
Figure A3	2 Heat capacity vs temperature plots	86
Figure A3	3 Volumetric enthalpy vs temperature plots	87
Table A3	.1 Mechanical Properties of Materials	188
Table A3	2 Mean Linear Thermal Expansion of Materials 3	189
Appendix I	V ELECTRICAL PROPERTIES OF NORMAL METALS 3	191
Figure A4	.1 Normalized zero-field electrical resistivity vs temperature plots	391
Figure A4		
Figure A4	.3 Copper Residual Resistivity Ratio (RRR) vs	
775-1-1- A 4	magnetic induction plots	
Table A4 Appendix V		
Table A5	-02	
Table A5	· ·	
Figure A5		
Figure A5		
Table A5	•	
Figure A5	- · · · · · · · · · · · · · · · · · · ·	
Table A5	.4 Selected Physical Properties of YBCO and BSCCO 3	399
APPENDIX \	I GLOSSARY	1 01
APPENDIX V	TI QUOTATION SOURCES AND CHARACTER IDENTIFICATION 4	113
INDEX		115