

Contents

Preface			xi
Chapter	1	High-Power Microwave Electronics: A Survey of Achievements	
		and Opportunities by V. L. Granatstein and A. V. Gaponov-	
		Grekhov	1
1.1	Intr	oduction	1
1.2	The Gap in the Electromagnetic Spectrum at Millimeter and		
	Sub	omillimeter Wavelengths	2
1.3	Αŀ	A Brief History of Microwave Vacuum Electronics (to 1960)	
1.4	Rel	ativistic Microwave Electronics and New Advances in High-Power	
	Microwave Capabilities		
	1.4	1 Microwave Generation Based on Induced Bremsstrahlung	8
	1.4	2 Microwave Generators Using the Doppler Effect for Frequency	
		Upconversion	12
	1.4	3 Coherent Microwave Generation Using Intense Relativistic	
		Electron Beams	14
1.5	Applications of Relativistic Microwave Electronics		16
	1.5	1 Electron Cyclotron Resonance Plasma Heating and Current	
		Drive in Controlled Thermonuclear Fusion Reactors	16
	1.5	2 Microwave Discharge in Gases	17
	1.5	3 Enhanced Radar Systems	18
	1.5	4 Measurement and Modification of the Atmosphere	19
	1.5	5 Advanced Accelerators for High-Energy Physics Research	20
	1.5	6 Industrial Processing of Materials	21
Refer	ence	es	22
Chapter	2	Principles and Capabilities of High-Power Microwave Generators	
•		by G. S. Nusinovich, T. M. Antonsen, Jr., V. L. Bratman, and	
		N. S. Ginzburg	25

2.1		pies of Operation	25
	2.1.1	Electron Radiation and Classes of Microwave Tubes	25
	2.1.2	Synchronism	29
	2.1.3	Electron Bunching	31
	2.1.4	Power Limits	32
	2.1.5	Regimes of Operation: Oscillators and Amplifiers	33
	2.1.6	High-Frequency Relativistic Electronics: Frequency Increase	
		and Power Escalation	35
2.2	Micro	wave Sources Based on Coherent Cherenkov and Transition	
	Radiat	tion of Electrons	35
	2.2.1	O-Type Cherenkov Devices	35
	2.2.2	Klystrons	47
	2.2.3	M-Type Devices	53
2.3	Micro	wave Sources Based on Coherent Bremsstrahlung Radiation of	
	Electro	ons	62
	2.3.1	Cyclotron Resonance Masers (Gyrodevices)	62
	2.3.2	Free-Electron Lasers	85
	2.3.3	Vircators	97
2.4	Conclu	usion	100
Ackı	nowledg	ments	101
Refe	rences		101
Chapter	-3 FI	ectron-Cyclotron Resonance Plasma Heating and Current Drive	
Chapter		Toroidal Devices by V. V. Alikaev and E. V. Suvorov	111
3.1	Introd	•	111
3.2		al Remarks on Electron–RF Field Interaction Under ECR	
3.2	Condi		114
3.3		Cyclotron Absorption of Electromagnetic Waves in a	
3.3		etized Plasma	119
3.4	_	linear Effects in a Plasma Irradiated by Microwaves—Heating	117
5.1	-	urrent Drive	125
3.5		iments on ECR Heating and Current Drive in Toroidal Plasmas	133
3.6		y and Experiment on ECR Heating by Intense RF Fields	138
3.7	Concl		141
	rences	4510115	142
Chapter		eely Localized Gas Discharge in Microwave Beams by A. G.	1.45
		tvak	145
4.1	Introd		145
4.2		uilibrium Self-Sustained Microwave Discharge in a Focused	1.47
	Wave		147
4.3		ed Microwave Discharge	153
4.4	Ioniza	tion Phenomena in a Superstrong Microwave Beam	156

	4.4.1	Experimental Results	157
	4.4.2	Ionization Upconversion of Frequency	159
4.5	Applic	cations	160
	4.5.1	Plasma Chemistry	160
	4.5.2	Electron-Cyclotron Discharge	161
	4.5.3	Ultraviolet Laser	162
4.6	Artific	cially Ionized Layer	162
	4.6.1		164
	4.6.2		164
	4.6.3	Atmospheric Purification of Freons	165
Refe	rences		166
Chapter	5 A	oplications of High-Power Microwave Sources to Enhanced Radar	
-		stems by W. M. Manheimer, G. Mesyats, and M. I. Petelin	169
5.1	Introd	•	169
5.2	Backw	vard-Wave Oscillators and Gyrotrons for Radar Systems	170
	5.2.1	X-Band BWOs	170
	5.2.2	Gyrotron Oscillators	173
	5.2.3	Gyrotron Amplifiers	176
5.3		Applications of High-Power Microwave Sources	182
	5.3.1		182
	5.3.2		184
	5.3.3		187
	5.3.4	Range Ambiguity, Blind Speed, and Dead Time	189
	5.3.5	Amplifiers and Oscillators for Radars	190
5.4	Nanos	econd Radar	190
5.5	Active	Monitoring of the Atmosphere With Millimeter Waves	193
	5.5.1	Millimeter-Wave Cloud Radars	197
	5.5.2	Radar Scatter From Clouds	197
	5.5.3	Analysis of Radar Returns From Clouds	199
	5.5.4	High-Power Millimeter-Wave Atmospheric Probes	200
5.6	Space	Debris Radar	202
Ackr	nowledg	gments	205
Refe	rences		206
Chapter	6 M	odification and Measurement of the Atmosphere by High-Power	
-	M	icrowaves by J. N. Benford	209
6.1	Introd	uction	209
6.2	Atmos	spheric Diagnostics	209
	6.2.1	Turbulence Structure	210
	6.2.2	Relative Humidity	210
	6.2.3		210
6.3	Ozone	Conservation	212

6.4	Artificial Ionospheric Mirror			
6.5	Technology Requirements for Atmospheric Measurement and			
		ication	222	
6.6	Discus	ssion	224	
Ackı	nowledg	gments	226	
Refe	rences		226	
Chapter	· 7 Aı	oplication of High-Power Microwave Sources to TeV Linear		
omap von	-	olliders by P. B. Wilson	229	
7.1	Introd	· · · · · · · · · · · · · · · · · · ·	229	
	7.1.1	Why Linear Colliders?	230	
	7.1.2	The First Linear Collider: The SLC	231	
	7.1.3	General Description of a Next-Generation Linear Collider	233	
	7.1.4	Worldwide R&D Programs on Linear Colliders	235	
7.2	Basic	Collider Parameters	238	
	7.2.1	Peak RF Power Requirement and Accelerating-Structure		
		Design	238	
	7.2.2	Beam Loading and Average Power Requirement	246	
	7.2.3	The Longitudinal Wake Potential: Single and Multibunch		
		Energy Spread	252	
	7.2.4	The Transverse Wake Potential and Dipole Wakefield		
		Suppression	262	
	7.2.5	Beam-Beam Parameters	266	
7.3	Overv	iew of Collider Systems	274	
	7.3.1	Injection and Positron Production	274	
	7.3.2	Damping Rings, Bunch Compression, and Preacceleration	276	
	7.3.3	Main Linac Beam Dynamics	279	
	7.3.4	The Final Focus	282	
7.4	RF Sy	stem for a Linear Collider	284	
	7.4.1	Klystron Power Sources for Linear Colliders	285	
	7.4.2	Modulators	287	
	7.4.3	RF Pulse Compression	290	
	7.4.4	Overall RF System Efficiency	297	
7.5	Comp	arison of 0.5-TeV Linear Collider Designs	298	
7.6	-	g to Higher Energy	301	
	7.6.1	Parameter Constraints at Constant RF Wavelength	301	
	7.6.2	Collider Scaling in Energy and RF Frequency	305	
	7.6.3	A Look Into the Future: Toward a 5-TeV Collider	310	
7.7	Concl	usion	313	
Gene		erences	314	
	nowledg		314	
	ferences			

Chapter	8	Processing of Material Using Microwave Radiation by Y. V. Bykov	
		and V. E. Semenov	319
8.1	Intr	roduction	319
8.2	Physical Fundamentals of Microwave Processing		322
	8.2	.1 Volumetric Heating	323
	8.2	.2 Specific Microwave Effect	330
	8.2	.3 Microwave-Assisted Nonequilibrium Plasma Chemistry	334
8.3	Technical Aspects of Microwave Processing		336
8.4	Conclusion		345
References			348
About th	ne A	authors	353
Index			357