CONTENTS

PARAXIAL WKB SOLUTION OF A SCALAR WAVE EQUATION

G. V. Pereverzev

Introd	luction							
1.	Eikon	al approximation of the ray method						
	1.1.	Wave equation and short-wavelength						
		ordering						
	1.2.	Debye asymptotic expansion, eikonal						
		approximation						
	1.3.	Ray tracing						
2.	Parax	tial WKB approach						
	2.1.	Short-wavelength asymptotic expansion						
	2.2.	Reference ray						
	2.3.	Wave-packet description						
	2.4.	Paraxial expansion						
3.	Beam	tracing						
	3.1.	Ray coordinates						
	3.2.	First form of the beam-tracing equations . 16						
	3.3.	Second form of the beam-tracing equations 18						
	3.4.	Initial conditions for the beam-tracing						
		equations						
	3.5.	Discussion of the beam-tracing equations . 2:						
4.	Equation for the wave amplitude							
	4.1.	Solving the transport equation						
	4.2.	Accounting for dissipation 25						
5.	Solution of the wave equation							
	5.1.	Partial solution 20						
	5.2.	General solution						
	5.3.	Applicability of the paraxial WKB						
		approach						

i	Conte	nts	Contents vii			
6. Appen A. B.	5.4. Example of a pWKB solution Conclusions dices Geometric properties of ray trajectories A.1. The Fermat principle for Eq. (1.1) A.2. Rays as geodesics in a Riemannian space Tensor form of the beam-tracing equations B.1. Ray coordinates B.2. Derivation of the beam-tracing equations B.3. Initial conditions B.4. Metric properties of the ray coordinates	31 36 37 37 37 40 43 44 45 47 48	3.4. The effect of heavy impurities on plasma multiple-mirror confinement			
	MULTIPLE-MIRROR PLASMA					
	CONFINEMENT		PLASMA ROTATION IN TOKAMAKS			
	V. V. Mirnov and A. J. Lichtenberg		V. Rozhansky and M. Tendler			
Introd 1. 2.	Qualitative consideration of multiple-mirror effects	90	Introduction			
3	field with "point" mirrors		3.3. Nonlinear effects resulting from fast rotations			

viii Contents Fast poloidal rotation and L-H transitions 187 Suppression of turbulence by a shear of the 4.2. Anomalous transport and steep radial profiles of the poloidal rotation velocity in The electric field at the separatrix 197 4.3. Radial current in experiments with a 4.4. biased electrode 200 Comparison with experiments 206 4.5.The effect of rotation on impurity transport . . . 211 Poloidal perturbation of the impurity densities and their fluxes within a magnetic surface 211 Radial transport of impurities 216 Plasma rotation and flows within the scrape-off Convection within the SOL in a tokamak with a poloidal limiter 218 6.2.Flows within the SOL in a tokamak with The impact of the biasing radial electric 6.3.field on parameters of the SOL 231 Conclusions Appendices A.1.

A.2.

References