CONTENTS

PREFAC	E TO THE SECOND RUSSIAN EDITION	xiii	
PREFACE TO THE FIRST RUSSIAN EDITION		xv	
NOTATI	NOTATION		
	E FUNDAMENTAL THEORY OF ELECTROMAGNETIC WAVE DPAGATION IN PLASMAS	1	
§ 1.	General introduction. The plasma parameters in various cases Various cases of wave propagation in plasmas Plasma parameters Plasma properties	1 1 2 3	
§ 2.	Fundamental equations. The nature of the approximations used The field equations. The constitutive equations in linear electro-	4	
	dynamics Frequency dispersion and spatial dispersion, and their significance in plasmas	4 7	
	The field equations neglecting spatial dispersion (a "cold" plasma)	10	
	One-dimensional problems. Plane waves	13	
	Plasma oscillations	15	
	Propagation of various types of waves	16	
II. WA	VE PROPAGATION IN A HOMOGENEOUS ISOTROPIC PLASMA	19	
§ 3.	The complex permittivity of a "cold" plasma: elementary theory	19	
	Elementary derivation of the expressions for ε and σ	19	
	The effective field	22	
	The range of applicability of the formulae	25	
	The permeability of the plasma. Allowance for spatial dispersion	27	
§ 4.	The method of the Boltzmann equation	28	
	The distribution function and the Boltzmann equation	28	
	A plasma in a strong electric field	29	
	The form of the distribution function and the equation for it in a weak field	31	
	Transport cross-sections. Debye screening	31 34	
	The limits of applicability of the kinetic-theory formulae	39	
o r			
§ 5.	Microprocesses in plasmas Microprocesses in plasmas. The equations of conservation of particles	40	
	of each species The slowing down time of non aquilibrium electrons in a plasma	40 44	
	The slowing-down time of non-equilibrium electrons in a plasma The deviation of the distribution function from the equilibrium form. Estimates for the ionosphere	44 48	
	Estimates for the follosphere	40	

v

vi	Contents	
ł	§ 6. The permittivity and conductivity of a plasma: kinetic theory General relations Collisions with molecules	50 50 52
	Collisions with ions	53
	The part played by collisions between electrons	54
	The collision frequency in the ionosphere	56
	Low frequencies The general case of an arbitrary frequency	58 61
	Collisions of ions with ions and molecules	63
	Dispersion relations	65
ł	§ 7. The propagation of electromagnetic (transverse) waves in a homo-	
	geneous plasma The indices of refraction and absorption	65 65
	Damping of waves in the absence of absorption	67
	Expressions for n and \varkappa in limiting cases	68
	Real and complex frequencies	69
Ę	8. The allowance for spatial dispersion. Plasma waves and acoustic waves Plasma (longitudinal) waves. Phenomenological allowance for spatial	69
	dispersion The kinetic theory	69 74
	Cherenkov radiation in a plasma. Absorption of plasma waves	79
	Absorption and the quasilinear theory of plasma waves	84
	The effect of ions. Acoustic waves The quasihydrodynamic method	91 93
	Longitudinal waves in a two-temperature plasma	93 94
4	§ 9. Summary of principal formulae	97
	Transverse waves	98
	Longitudinal waves in a plasma	101
	WAVE PROPAGATION IN A HOMOGENEOUS MAGNETOACTIVE PLASMA	104
4	§ 10. The complex permittivity tensor	104
	The effect of a constant magnetic field on the properties of a plasma	104
	The complex permittivity tensor: elementary theory Properties of the tensor e'_{ij}	105 107
	The tensor ε'_{ij} in other coordinate systems	109
	Kinetic theory	112
	The effect of the motion of ions	115
4	§ 11. High-frequency wave propagation in a magnetoactive plasma	118
	Expressions for the indices of refraction and absorption $n_{1,2}$ and $\varkappa_{1,2}$	118
	Some particular cases Propagation of waves at an arbitrary angle α to the magnetic field	121 125
	Propagation of whistlers and of "helical waves" in metals	123
	Wave polarisation	129
	Normal waves. The case of small angles α	131
	The allowance for absorption Quasilongitudinal and quasitransverse propagation	134 137
	Propagation of two coherent normal waves. Rotation of the plane of	
	polarisation (the Faraday effect)	138
	The critical collision frequency and essential multiple roots of the dis- persion relation	140

Contents	vii
Graphs of $n_{1,2}(v)$ and $\varkappa_{1,2}(v)$ The effect of ions on the propagation of high-frequency waves Absorption and emission of electromagnetic waves by a magneto-	142 145
 active plasma § 12. Spatial dispersion and plasma waves in a magnetic field: the allowance for thermal motion The passage to the limit of an isotropic plasma The allowance for spatial dispersion in an anisotropic medium The quasihydrodynamic approximation Plasma waves in a magnetoactive plasma The kinetic theory The nature of the collisionless absorption Calculation of the absorption coefficient by means of Kirchhoff's law and the method of Einstein coefficients Results of the kinetic theory for longitudinal propagation (α = 0) 	147 150 150 151 153 156 157 157 162 162
Resonance absorption for an arbitrary angle α The Cherenkov absorption range (near the resonance frequency ω_{∞}) The ordinary wave at low frequencies Summary	171 178 186 187
§ 13. Some remarks on plasma dynamics The hydromagnetic approximation The quasihydrodynamic approximation The motion of a pure electron-ion plasma and a weakly ionised gas Steady motion of a weakly ionised gas in a magnetic field. The Earth's ionosphere	187 187 190 193 196
 § 14. Propagation of low-frequency and hydromagnetic waves Introduction Hydromagnetic waves Low-frequency waves: the quasihydrodynamic approximation. Longi- tudinal propagation The range of validity of the hydromagnetic formulae Angles α close to ½π. "Hybrid" resonances The region of ion gyromagnetic resonance The effect of molecules The thermal motion. Some results of the kinetic theory: velocity change, damping in the absence of collisions § 15. Summary of principal formulae 	199 199 199 206 209 210 211 213 214 214 219
IV. WAVE PROPAGATION IN AN INHOMOGENEOUS ISOTROPIC	217
 PLASMA § 16. Introduction. The approximation of geometrical optics The wave equations. A medium of plane layers Exact solutions for a plane-parallel medium Approximate solutions The approximation of geometrical optics A more rigorous treatment of the same problem Cases where the approximation of geometrical optics is inapplicable. Total internal reflection The reflection of radio waves from the ionosphere A completely non-reflecting layer Weak reflection. The interpolation formula for R in a general layer 	224 224 225 225 226 229 231 234 234 234 235
Reflection from a discontinuity of the derivative dn/dz	238

viii

	§ 17 .	Exact solutions of the wave equation with ε' linear, parabolic, or equal	a 40
		to $a/(b+z)^2$	240
		Introduction	240
		A linear layer without absorption	240
		A linear layer with absorption	243
		A parabolic layer without absorption	245
		A layer with $\varepsilon' = a/(b+z)^2$	247
	§ 18.	Reflection and transmission of waves by "symmetrical" and "transi- tion" layers of arbitrary thickness	249
		A smooth layer with four parameters	249
		A "symmetrical" layer	250
		A "transition" layer. The limiting transition to a sharp boundary	251
	§ 19.	Oblique incidence of waves on a layer	252
		General relations. A wave with the electric vector perpendicular to the	
		plane of incidence	252
		The approximation of geometrical optics	255
		The ray treatment	256
		Waves with the electric vector in the plane of incidence	257
		The equation for the magnetic field of the wave	259
	§ 20.	A property of the field of an electromagnetic wave propagated in an inhomogeneous isotropic plasma. Interaction of the electromagnetic	
		and plasma waves	260
		A physical description of the phenomenon	260
		The solution of the wave equation	262
		The allowance for spatial dispersion and various non-linear effects	268
		Allowance for the generation of plasma waves. The interaction between	
		different normal waves	271
		The mutual transformation of and interaction between longitudinal and	
		transverse waves in a plasma	27 7
	8 21	The propagation of pulse signals	280
	y 21.	The Fourier representation of a pulse field	280
		Propagation of a quasimonochromatic pulse without allowance for	200
		spreading	282
		Phase and group velocities of waves	282
		Spreading of pulses	283 284
			284
		The limits of applicability of the approximation used, and some more accurate results	290
			290
	§ 22.	Energy density in a dispersive medium. The velocity of signals in plasmas	
		when absorption is present	292
		Introduction	292
		Energy density in a non-absorbing dispersive medium	293
		The case of an absorbing medium	296
		Energy density for a model of an absorbing plasma	299
		Energy density for an assembly of oscillators	300
		Energy density in plasma waves	300
		Velocity of signals in an absorbing medium. Application to a plasma	301
X 7	***		
۷.		/E PROPAGATION IN AN INHOMOGENEOUS MAGNETO- IVE PLASMA	304
	§ 23.	Introduction. The approximation of geometrical optics	304
	• ·	The wave equations	304
		The approximation of geometrical optics	305

Con	tents	
-----	-------	--

	Contents	ix
	The limits of applicability of the approximation of geometrical optics The region near the boundary of the layer and the interaction of normal	308
	waves there	310
	Propagation of pulses	313
	The group-velocity vector in an anisotropic medium	313
	The case of a magnetoactive plasma The group-velocity vector, the direction of the ray and the energy-flux vector	317 320
	Propagation of pulses in an inhomogeneous medium	320
	Propagation of pulses in an absorbing medium	324
8 25	Reflection of waves from an inhomogeneous layer	329
§ 20.	Reflection from a layer. Angles $\alpha = 0$ and $\alpha = \frac{1}{2}\pi$	329
	The approximate solution for an arbitrary angle α	330
§ 26.	The limiting polarisation of waves leaving a layer of inhomogeneous	
	magnetoactive plasma	337
	Introduction. Some estimates	337
	The approximate solution	338
	Results of the calculation	343
§ 27.	The behaviour of the wave field and the coefficients of reflection and	
	transmission when the refractive index has singularities	345
	Introduction. Singularities (poles) of the refractive index	345
	The rigorous solution for a layer with $\varepsilon'_{\text{eff}} = g/(z + is)^2$. The rigorous solution for a layer with $\varepsilon'_{\text{eff}} = \frac{1}{2}(z + is)^2$.	347
	The rigorous solution for a layer with $\varepsilon'_{\rm eff} = g^2/(z + is)$. The physical interpretation	347
	A layer with $\varepsilon_{\text{eff}} = g_1^2 + g_2^2/(z + is)$	349
	The pole of the function $(n - i\kappa)_{1,2}^2$ in a magnetoactive plasma	351
	The mechanism of resonance. The "peaking" of the field in a magneto-	
	active plasma	354
	The Earth's ionosphere	356
	The allowance for spatial dispersion and non-linear effects	357
§ 28.	The "tripling" of reflected signals by the interaction of normal waves	
	for small α	357
	The range of small angles α between the magnetic field and the wave	357
	vector. Description of the phenomenon Solution by the perturbation method for very small α	360
	The variational method: second limiting case	366
	The method of phase integrals	374
	General results for $u = \omega_H^2 / \omega^2 < 1$	375
	Formulae for δ_0 . Allowance for collisions	377
	The results for $u = \omega_H^2 / \omega^2 > 1$	382
§ 29.	Waves obliquely incident on a layer. The reciprocity theorem	385
	Introduction	385
	The approximation of geometrical optics	386
	The field in the first approximation of geometrical optics	388
	Graphs of the functions $q_{1,2}(v)$	390
	The paths of the wave normals and rays Some special cases	394 398
	Penetration of waves and the "tripling" of signals for oblique incidence	398 401
	Penetration of waves with $u = \omega_H^2/\omega^2 > 1$	401
	Proof of the reciprocity theorem	404
	The generalisation to the case of a magnetoactive medium	405
	Media with an unsymmetrical tensor μ'_{ij} and with spatial dispersion	406
PEW		

X	Contents	
VI. REI	FLECTION OF RADIO WAVES FROM IONOSPHERIC LAYERS	408
§ 30	. Introduction. Reflection from an arbitrary smooth layer Propagation of radio waves in the ionosphere Parameters of the ionosphere Reflection of waves from an arbitrary layer The effective height of reflection z_a . Height-frequency characteristics A parabolic layer Allowance for the variation of the layer with time. The Doppler effect	408 409 412 416 418 421
§ 31.	Allowance for absorption The effect of absorption on reflection of waves The reflection coefficient when absorption is small. Determination of v_{eff} from measurements of absorption	423 423 425
§ 32.	The field structure near the reflection point The field structure The approximation of geometrical optics Allowance for absorption	427 427 430 431
§ 33.	Reflection and penetration of waves with nearly the critical frequency in a layer A parabolic layer An arbitrary layer Allowance for absorption The effective height for a parabolic layer (exact solution) The time to establish the signal amplitude	432 432 433 437 438 441
§ 34.	Reflection of obliquely incident waves The reflection point. The critical frequency The ray treatment Theorems giving relations between the group paths for oblique and normal incidence Reflection from a spherical layer The field strength in signals reflected from the ionosphere	442 442 442 446 449 450
§ 35.	Wave reflection with allowance for the effect of a magnetic field The effect of a magnetic field. Critical frequencies The wave phase and the reflection coefficient. The course of the rays Quasilongitudinal and quasitransverse propagation Oblique incidence Allowance for the non-uniformity of the Earth's magnetic field	454 454 455 460 462 462
VII. RAD	DIO WAVE PROPAGATION IN COSMIC CONDITIONS	464
§ 36.	Propagation of radio waves in the Sun's atmosphere Introduction The solar corona Propagation of radio waves in the corona Emission of radio waves. Allowance for refraction The equation of transfer. The effective temperature of the radio emission The effect of the magnetic field Transformation of plasma waves into radio waves Collisionless absorption	464 465 466 473 475 478 482 483
	Kirchhoff's law in a magnetoactive plasma	484

Contents	xi	
§ 37. Propagation of radio waves in the interstellar medium Absorption of radio waves in the interstellar gas: general remarks Calculation of the absorption coefficient in a highly rarefied plasma Rotation of the plane of polarisation of radio waves in the interstellar medium	486 486 488 492	
VIII. NON-LINEAR PHENOMENA IN A PLASMA IN A VARIABLE ELECTROMAGNETIC FIELD	495	
 § 38. Introduction. A plasma in a strong electric field Non-linear effects in a plasma with and without collisions The condition for the field in the plasma to be weak. Some examples Statement of the problem for a strong field The elementary theory The accuracy of the results of the elementary theory The kinetic theory A strongly ionised plasma A weakly ionised plasma The change in electron density by plasma heating in a non-uniform field 	495 496 498 498 505 506 509 511 513	
 § 39. Non-linear effects in radio wave propagation in the ionosphere Introduction Basic relations The self-interaction effect Non-linear interaction of waves. Cross-modulation Non-linear interaction of unmodulated waves. Combination frequencies The effect of radio waves on the ionosphere Non-linearity due to changes in electron density 	515 515 516 517 521 525 528 528	
REFERENCES		
INDEX OF SUBJECTS		
INDEX OF NAMES		
OTHER TITLES IN THE SERIES		