

目 次

	第1章 電子回路のはたらき	
1 • 1	エレクトロニクスの活躍	1
1 • 2	電子回路によってどんなことができるか	2
1 • 3	超小形回路への進展	6
	第2章 回路の解析によく使われる基本法則	
2 • 1	オームの法則/オームの法則に従わない素子	11
2 • 2	キルヒホッフの法則/閉路解析法	17
2 • 3	電圧源・電流源の考え方	19
2 • 4	双対の理とそれの応用	22
2 • 5	重ね合せの理といろいろの応用	26
2 • 6	鳳・テブナンの定理	31
2 • 7	最大利用電力一整合の問題	36
	第3章 共振回路の考えかたとコイル,	
	コンデンサの実際	
3 • 1		39
3 · 1 3 · 2	コンデンサの実際	39 45
	コンデンサ の実際 直列共振回路の性質	-
3 • 2	コンデンサの実際 直列共振回路の性質 並列共振回路の性質	45
3 · 2 3 · 3	コンデンサの実際 直列共振回路の性質 並列共振回路の性質 コイルの実際	45 51
3 · 2 3 · 3 3 · 4	コンデンサの実際 直列共振回路の性質・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	45 51 55
3·2 3·3 3·4 3·5	コンデンサの実際 直列共振回路の性質… 並列共振回路の性質… コイルの実際… コンデンサの実際… Qメータの原理と応用…	45 51 55 60
3 · 2 3 · 3 3 · 4 3 · 5 3 · 6	コンデンサの実際 直列共振回路の性質… 並列共振回路の性質… コイルの実際… コンデンサの実際… Qメータの原理と応用…	45 51 55 60
3 · 2 3 · 3 3 · 4 3 · 5 3 · 6	コンデンサの実際 直列共振回路の性質	45 51 55 60
3 · 2 3 · 3 3 · 4 3 · 5 3 · 6	コンデンサの実際 直列共振回路の性質	45 51 55 60
3 · 2 3 · 3 3 · 4 3 · 5 3 · 6	コンデンサの実際 直列共振回路の性質 並列共振回路の性質 コイルの実際 コンデンサの実際 Qメータの原理と応用 結合形共振回路 第4章 半導体の電気伝導のしくみと トランジスタのはたらき	45 51 55 60 62
3 · 2 3 · 3 3 · 4 3 · 5 3 · 6	コンデンサの実際 直列共振回路の性質 並列共振回路の性質 コイルの実際 コンデンサの実際 Qメータの原理と応用… 結合形共振回路 第4章 半導体の電気伝導のしくみと トランジスタのはたらき 原子の模型についての一つの考えかた	45 51 55 60 62
3 · 2 3 · 3 3 · 4 3 · 5 3 · 6	コンデンサの実際 直列共振回路の性質 並列共振回路の性質 コイルの実際 コンデンサの実際 Qメータの原理と応用 結合形共振回路 結合形共振回路 第4章 半導体の電気伝導のしくみと トランジスタのはたらき 原子の模型についての一つの考えかた エネルギー準位図と導体・絶縁体	45 51 55 60 62 67 71

	しくみ 81
4 • 5	トランジスタの構造とはたらき 86
	第5章 トランジスタ増幅回路の考えかた
5 • 1	増幅のしくみ 93
$5 \cdot 2$	トランジスタ増幅器の等価回路······ 94
5 • 3	各接地形式の増幅回路を比較する102
5 • 4	RC 結合低周波増幅器の実際109
5 · 5	直流パイアスの安定化の問題118
5 • 6	トランス結合低周波増幅回路の実際121
5 • 7	高周波増幅回路の実際122
	第6章 発振回路の考えかた
6 • 1	発振はどのようにしておきるか127
$6 \cdot 2$	負性抵抗素子を使った発振回路130
6 · 3	トランジスタ発振回路のつくりかた <i>134</i>
$6 \cdot 4$	発振周波数の変動をきわめて小さくおさえられる
	水晶発 振器 ······141
	第7章 振幅変調と周波数変調
7 • 1	振幅変調(AM)の原理 ······147
7 • 2	振幅変調回路のいろいろ <i>151</i>
7 • 3	AM 波の復調回路160
7 • 4	周波数変調(FM) の原理 ······162
	第8章 簡単な CR 回路の過渡現象と
	パルスレスポンス
8 • 1	ステップ入力にたいする CR 回路のレスポンス…169
8 • 2	過渡波形の図形上の性質172
8 • 3	CR 回路の過渡波形を書き下すには174
8 • 4	方形パルス入力にたいする CR 回路の
	レスポンス178
8 • 5	ランプ入力にたいする CR 回路のレスポンス182
8 · 5 8 · 6	
	ランプ入力にたいする CR 回路のレスポンス182

	第9章 代表的なパルス波形発生回路	
9 • 1	フリップフロップ回路(双安定マルチバイブ	
	ν-β) ······195	
9 • 2	その他のパルス波形発生回路 207	
第	10章 交流理論的取扱いと過渡現象論的	
取扱いとを結びつける		
10 • 1	フーリエ級数を復習する······215	
10 • 2	周期波形,孤立波形のスペクトル220	
10 • 3	回路の周波数特性を知ってパルスレスポンスを	
	求める·······230	
10 • 4	パルスの増幅にはいくちの帯域幅が必要か232	
10 • 5	帯域幅の狭いフィルタに周期パルスを加え	
	正弦波形を取り出す240	
10 • 6	実際回路でのパルス立上り時間と帯域幅との	
	関係241	
	第11章 いろいろな直流電源	
11 • 1	いろいろな一次電池の構造······247	
11 • 2	一次電池規格表の見かた・使いかた 250	
11 • 3	密閉形蓄電池のあらまし255	
11 • 4	交流から直流を得る整流方式を分類する258	
11 • 5	チョーク入力整流回路とコンデンサ入力整流	
	回路·····259	
11 • 6	トランジスタを使った簡単な電圧安定化回路 262	
11 • 7	さらに高級なトランジスタ式電圧安定化回路 265	
索	引	
ボ	71269	