CONTENTS

INTRODUCTION	x
 BASIC CONCEPTS OF DISCHARGES AND PLASMAS 1.1. The motion of a charged particle in a gas 1.2. Inclusion of the effects of inelastic collisions 1.3. Motion of charged particles in a magnetic field 1.4. Motion of an electron gas 1.5. Boltzmann's equation 1.6. Plasma variables in terms of the distribution functions 	1 5 7 10 13
2. THE POSITIVE COLUMN 2.1. The self-sustaining glow discharge 2.2. Calculation of ionization rates 2.3. The plasma balance equation 2.4. Collisions with boundary walls 2.5. A simple model of a plane positive column 2.6. The free-fall model of the positive column 2.7. Extending the models	20 22 23 24 26 29 30
 MAGNETIC FIELD EFFECTS 3.1. The positive column in a magnetic field 3.2. The positive column in a magnetic field at high pressures ar magnetic field strengths 3.3. Diamagnetism of a plasma column 3.4. The Hall effect in the positive column 	38 and 42 46 48
 4. EFFECTS OF SPACE CHARGE 4.1. The influence of a physical boundary to a plasma 4.2. A simple model for the space charge sheath at low pressure 4.3. Generalizing the Bohm criterion 4.4. Joining active plasma and sheath 4.5. Asymptotic analyses of the positive column 4.6. Finite ion temperature 4.7. Detailed conditions adjacent to a wall 4.8. Axial sheaths in a positive column 4.9. The cathode region of a hot-cathode discharge 4.10. The double sheath 	51 51 55 58 65 67 70 72 72 72
 RADIALLY VARYING AND TIME-VARYING POSITIVE COLUMNS Variation of neutral density Radial variation of the charged-particle temperatures The positive column with negative ions Contraction of the positive column Thermal effects in the positive column Volume recombination in the positive column Contraction due to the combined effects of gas heating an volume recombination 	81 86 88 92 94 95 ad

viii CONTENTS

	5.8.	Contraction due to radial variation in the electron energy dis-	
	~ 0	tribution function	97
	5.9.	Contraction in electron-attaching gases	102
	5.10	The afterglow positive column	103
	5.11	Afterglows containing negative ions	108
	3.12	The positive column with an alternating current	109
6.	ELEC	CTRON PLASMA WAVES	
	6.1.		112
	6.2.	Experimental measurements	116
	6.3.	Axial propagation in a uniform cylindrical column	117
	6.4.	Axial propagation in a strongly magnetized uniform plasma column	119
	6.5.	Radially propagating longitudinal waves in an unmagnetized column	121
	6.6.	Damping of radially propagating waves	124
	6.7.	General propagation of longitudinal waves in a column	124
	6.8.	Axial propagation in a finite magnetic field	128
	6.9.	Radial propagation perpendicular to a finite magnetic field—	120
		Bernstein waves	131
	6.10.	Bernstein waves in a non-uniform plasma	135
_		•	1
7.		WAVES	
	7.1.	The fluid approximation	138
	7.2.	Kinetic theory of ion waves	140
	7.3. 7.4.	Measurements showing kinetic effects	142
	7.4. 7.5.	Finite plasma and other effects	143
	7.5. 7.6.	Ion waves in positive columns	145
	7.7.	Waves in plasmas with relative drift between ions and electrons	149
	/./.	The influence of collisions and finite geometry on the two- stream instability	4.50
	7.8.	The ion acoustic instability	152
	7.9.	Ion waves propagating across the positive column	152
	1.5.	for waves propagating across the positive column	155
8.	IONI	ZATION WAVES	
	8.1.	Non-isothermal waves at low pressures	159
	8.2.	The relation between ion waves and ionization waves	161
	8.3.	Ionization waves at higher pressures	162
	8.4.	Metastable-guided ionization waves	166
	8.5,	The influence of electron energy distribution	168
	8.6.	The effect of finite column radius on ionization waves	169
	8.7.	Ionization waves in a magnetic field	171
	8.8.	Waves at low pressure with more than one species of ion	173
	8.9.	Waves in recombination-dominated plasmas	176
	8.10.	Waves at high pressures in electron-attaching gases	177
	8.11.	Unstable ionization waves and striations	179
9	LOW	FREQUENCY WAVES IN A MAGNETIZED PLASM	
	9.1.	Transverse wave propagation along a steady magnetic field	
	9.2.	Propagation perpendicular to the magnetic field	183
	9.3.	Propagation at an angle to the magnetic field	186
	·	- 10 page on at an angle to the magnetic neigh	188

CONTENTS	i
9.4. Inclusion of electron temperature—ion cyclotron waves	18
9.5. Experiments involving whistler and helicon waves	19
9.6. Electron cyclotron waves	19
9.7. Experimental measurement of Alfvén waves	19
9.8. The slow Alfvén wave	20
9.9. Non-axisymmetric Alfvén waves	20
9.10. Ion Bernstein waves	20
9.11. Concluding remarks	20
10. DRIFT WAVES	
10.1 Drift waves as modified ion waves	20
10.2 Drift waves at high phase velocities	20
10.3 The drift dissipative instability	21
APPENDIX I: General solutions of the Boltzmann equation	21
APPENDIX II: The permittivity tensor for a cold magnetized plasma	22
APPENDIX III: Wave propagation in cylindrical magnetized plasmas	22
APPENDIX IV: Wave propagation in warm plasmas	23
APPENDIX V: Physical constants and typical values of parameters	23
REFERENCES	23
INDEX	24