CONTENTS | INTRODUCTION | x | |--|--| | BASIC CONCEPTS OF DISCHARGES AND PLASMAS 1.1. The motion of a charged particle in a gas 1.2. Inclusion of the effects of inelastic collisions 1.3. Motion of charged particles in a magnetic field 1.4. Motion of an electron gas 1.5. Boltzmann's equation 1.6. Plasma variables in terms of the distribution functions | 1
5
7
10
13 | | 2. THE POSITIVE COLUMN 2.1. The self-sustaining glow discharge 2.2. Calculation of ionization rates 2.3. The plasma balance equation 2.4. Collisions with boundary walls 2.5. A simple model of a plane positive column 2.6. The free-fall model of the positive column 2.7. Extending the models | 20
22
23
24
26
29
30 | | MAGNETIC FIELD EFFECTS 3.1. The positive column in a magnetic field 3.2. The positive column in a magnetic field at high pressures ar magnetic field strengths 3.3. Diamagnetism of a plasma column 3.4. The Hall effect in the positive column | 38
and
42
46
48 | | 4. EFFECTS OF SPACE CHARGE 4.1. The influence of a physical boundary to a plasma 4.2. A simple model for the space charge sheath at low pressure 4.3. Generalizing the Bohm criterion 4.4. Joining active plasma and sheath 4.5. Asymptotic analyses of the positive column 4.6. Finite ion temperature 4.7. Detailed conditions adjacent to a wall 4.8. Axial sheaths in a positive column 4.9. The cathode region of a hot-cathode discharge 4.10. The double sheath | 51
51
55
58
65
67
70
72
72
72 | | RADIALLY VARYING AND TIME-VARYING POSITIVE COLUMNS Variation of neutral density Radial variation of the charged-particle temperatures The positive column with negative ions Contraction of the positive column Thermal effects in the positive column Volume recombination in the positive column Contraction due to the combined effects of gas heating an volume recombination | 81
86
88
92
94
95
ad | viii CONTENTS | | 5.8. | Contraction due to radial variation in the electron energy dis- | | |----|--------------|---|------| | | ~ 0 | tribution function | 97 | | | 5.9. | Contraction in electron-attaching gases | 102 | | | 5.10 | The afterglow positive column | 103 | | | 5.11 | Afterglows containing negative ions | 108 | | | 3.12 | The positive column with an alternating current | 109 | | 6. | ELEC | CTRON PLASMA WAVES | | | | 6.1. | | 112 | | | 6.2. | Experimental measurements | 116 | | | 6.3. | Axial propagation in a uniform cylindrical column | 117 | | | 6.4. | Axial propagation in a strongly magnetized uniform plasma column | 119 | | | 6.5. | Radially propagating longitudinal waves in an unmagnetized column | 121 | | | 6.6. | Damping of radially propagating waves | 124 | | | 6.7. | General propagation of longitudinal waves in a column | 124 | | | 6.8. | Axial propagation in a finite magnetic field | 128 | | | 6.9. | Radial propagation perpendicular to a finite magnetic field— | 120 | | | | Bernstein waves | 131 | | | 6.10. | Bernstein waves in a non-uniform plasma | 135 | | _ | | • | 1 | | 7. | | WAVES | | | | 7.1. | The fluid approximation | 138 | | | 7.2. | Kinetic theory of ion waves | 140 | | | 7.3. 7.4. | Measurements showing kinetic effects | 142 | | | 7.4.
7.5. | Finite plasma and other effects | 143 | | | 7.5.
7.6. | Ion waves in positive columns | 145 | | | 7.7. | Waves in plasmas with relative drift between ions and electrons | 149 | | | /./. | The influence of collisions and finite geometry on the two-
stream instability | 4.50 | | | 7.8. | The ion acoustic instability | 152 | | | 7.9. | Ion waves propagating across the positive column | 152 | | | 1.5. | for waves propagating across the positive column | 155 | | 8. | IONI | ZATION WAVES | | | | 8.1. | Non-isothermal waves at low pressures | 159 | | | 8.2. | The relation between ion waves and ionization waves | 161 | | | 8.3. | Ionization waves at higher pressures | 162 | | | 8.4. | Metastable-guided ionization waves | 166 | | | 8.5, | The influence of electron energy distribution | 168 | | | 8.6. | The effect of finite column radius on ionization waves | 169 | | | 8.7. | Ionization waves in a magnetic field | 171 | | | 8.8. | Waves at low pressure with more than one species of ion | 173 | | | 8.9. | Waves in recombination-dominated plasmas | 176 | | | 8.10. | Waves at high pressures in electron-attaching gases | 177 | | | 8.11. | Unstable ionization waves and striations | 179 | | 9 | LOW | FREQUENCY WAVES IN A MAGNETIZED PLASM | | | | 9.1. | Transverse wave propagation along a steady magnetic field | | | | 9.2. | Propagation perpendicular to the magnetic field | 183 | | | 9.3. | Propagation at an angle to the magnetic field | 186 | | | · | - 10 page on at an angle to the magnetic neigh | 188 | | CONTENTS | i | |---|----| | 9.4. Inclusion of electron temperature—ion cyclotron waves | 18 | | 9.5. Experiments involving whistler and helicon waves | 19 | | 9.6. Electron cyclotron waves | 19 | | 9.7. Experimental measurement of Alfvén waves | 19 | | 9.8. The slow Alfvén wave | 20 | | 9.9. Non-axisymmetric Alfvén waves | 20 | | 9.10. Ion Bernstein waves | 20 | | 9.11. Concluding remarks | 20 | | 10. DRIFT WAVES | | | 10.1 Drift waves as modified ion waves | 20 | | 10.2 Drift waves at high phase velocities | 20 | | 10.3 The drift dissipative instability | 21 | | APPENDIX I: General solutions of the Boltzmann equation | 21 | | APPENDIX II: The permittivity tensor for a cold magnetized plasma | 22 | | APPENDIX III: Wave propagation in cylindrical magnetized plasmas | 22 | | APPENDIX IV: Wave propagation in warm plasmas | 23 | | APPENDIX V: Physical constants and typical values of parameters | 23 | | REFERENCES | 23 | | INDEX | 24 |