TABLE OF CONTENTS

ABSTRACT
TABLE OF CONTENTS
LIST OF TABLES
LIST OF FIGURES
LIST OF SYMBOLS
1. INTRODUCTION
1.1 Motivation and Approach
1.2 Chapter Contents
2. PROPERTIES OF THE MESOSPHERE AND LOWER THERMOSPHERE 6
2.1 Properties of the Neutral Atmosphere 6
2.2 Observations of Winds and Turbulence
2.3 Summary 11
3. PROPERTIES OF THE <i>D</i> -REGION IONIZATION
3.1 Introduction \ldots 12
3.2 Weakly Ionized Nature of the D Region
3.3 Sources of Ionization
3.4 D-Region Electron Concentration
3.5 D-Region Ion Composition
3.6 Electron and Ion Temperatures in the D Region
3.7 Electron Collision Processes in the D Region
3.8 Ion Collision Processes in the D Region
3.9 Summary
4. D-REGION PLASMA TRANSPORT PHENOMENA
4.1 Introduction \ldots \ldots \ldots \ldots 30

4.2	The Continuum Equations
4.3	Electron Collision Frequencies Used in the Continuum
	Equations for a Weakly Ionized Ionospheric Plasma 35
4.4	Ion-neutral Collision Frequencies for the Use in the Continuum
	<i>Momentum</i> Equation
4.5	Fluid Momentum Transfer by Production and Loss Processes , , 50
4.6	The Continuum Equations for a Uniform Magnetic Field
	and a Turbulent Velocity Field
4.7	Specialization to the Quasi-Neutral Approximation for
	One Species of Ion and a Magnetic Field
4.8	Invalidity of the Congruence Assumption in the Presence
	of a Magnetic Field
4.9	Conditions for the Elimination of the Electrostatic
	Potential in the Linear Approximation 61
4.10	Equations for the Electron Concentration Perturbation in
	the Linearized Quasi-Neutral Approximation
4.11	Ambipolar Diffusion in the Presence of a Magnetic Field
	Applied to Turbulence in the D Region 69
4.12	Acceleration Effects on Ionization Inhomogeneities 76
4.13	Effects of a Uniform Wind on Ionization Inhomogeneities 80
4.14	Production of Plasma Inhomogeneities by Turbulence and
	the Magnetic Field
4.15	Effects on Ion Concentrations of the Coupling of the Flux
	Velocities with the Spatial Derivatives of the Velocity
	Field
4.16	Particle Fluxes for Ambipolar Diffusion in a Weakly Ionized
	Multiconstituent Plasma

	4.17	Quasi-Neutral Multiconstituent Ambipolar Diffusion 109
	4.18	Non-Neutral Ambipolar Diffusion
	4.19	Summary
5.	TRANS	IENT COMPRESSIONAL RESPONSE OF D-REGION IONIZATION 143
	5.1	Introduction \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots 143
	5.2	Equations and Approximations ,
	5.3	Formal Solutions
	5,4	The D-Region Model
	5.5	Solutions for the D-Region Model
	5.6	Thermal Relaxation Effects
	5.7	Explication of the Solutions
	5.8	Discussion
6.	STATI	STICAL DESCRIPTION OF HYDRODYNAMIC TURBULENCE AND ADVECTED
	PASSI	VE SCALAR FIELDS
	6.1	Introduction \ldots
	6.2	Statistical Description of Turbulence
	6.3	Statistical Homogeneity and Isotropy
	6.4	The Spectral Formulation
	6.5	The Closure Problem
	6.6	The Spectral Equations
7.	THEOR	IES AND EXPERIMENTS ON THE SMALL SCALE STRUCTURE OF
	TURBU	LENCE AND ADVECTED SCALARS,
	7.1	Introduction \ldots
	7.2	Similarity Theory
		Inertial Range and Inertial-Convective Range
	7.4	The Viscous-Convective and Viscous-Diffusive Ranges 196
	7.5	The Inertial-Diffusive Range

ix

	7.6	Observations of the Energy Spectrum
	7.7	Observations of the Scalar Spectrum
	7.8	Small-Scale Intermittency
	7.9	Theory of Small-Scale Intermittency
	7.10	The Temperature Derivative Skewness
	7.11	Models of Scalar Spectral Transfer
	7.12	Summary
8.	SCALA	R SPECTRAL MODEL FOR TURBULENT ADVECTION
	8.1	Introduction \ldots \ldots \ldots \ldots \ldots \ldots \ldots 229
	8.2	The Model of the Scalar Spectrum
	8.3	Values of k*/k _d from Experiment
	8.4	Comparison of the Model Spectrum with Experiment 244
	8.5	Model Determination of a Third-Order Mixed Moment 249
	8.6	A Diffusion Model for the Scalar Spectrum
	8.7	Summary
9.	APPLI	CATION OF THE SCALAR SPECTRAL MODEL TO THE D REGION 253
	9.1	Introduction \ldots \ldots \ldots \ldots \ldots \ldots \ldots 253
	9.2	Scattering Cross Section Per Unit Volume
	9.3	Sensitivity of the Cross Section to Changes in the Rate of
		Dissipation of Turbulent Energy
	9.4	D-Region Parameters Determining the Scattering 259
	9.5	Estimation of the Cross Section Observed at Jicamarca 265
	9.6	The Electron Spectrum at Scales Smaller than the
		<i>Debye Length</i>
	9.7	Some Aspects of Mesospheric Turbulence and VHF Scatter 272
	9.8	Summary
APP	ENDIX	I. LOGNORMALITY OF GRADIENTS OF ADVECTED SCALARS 277

x

A-I.1 Introduction \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots 277	,
A-I.2 The Gradient Following the Fluid Motion	
A-I.3 Uniform and Persistent Straining of a Gaussian Distribution	
of Contaminant	
APPENDIX II. RELAXATION TO PHOTOCHEMICAL EQIULIBRIUM OF THE	
CONCENTRATIONS OF CHARGED SPECIES WITHIN DISPLACED AIR	
PARCELS IN THE D REGION	,
A-II.1 Introduction \ldots \ldots \ldots \ldots \ldots \ldots 287	, • .
A-II.2 Effects Accompanying the Displacement of Air Parcels 290) :
A-II.3 Photochemical Relaxation in the Upper D Region 293	, , ,
A-II.4 Steady-State Model of the Lower D Region	
A-II.5 Processes and Time Scales for the Equilibration of the	
Charged Species in the Lower D Region	•
A-II.6 Equilibration of Odd Oxygen and $0_2(^{1}A_{g})$ in Displaced Air	
Parcels.	
A-II.7 Equilibration for the Charged Species in Displaced Air	
Parcels in the Lower D Region)
A-II.8 <i>Discussion</i>)
REFERENCES)