CONTENTS

I.	INTR	ODUCTIO	N	1				
Ref	erences	to Chapter	· I	3				
II.	SUMM	IARY		5				
1.	Impur	ity control	- critical issue	5				
	1.1.	General		5				
	1.2.	Impurity	control issues	6				
		1.2.1.	Physics considerations	6				
		1.2.2.	Engineering considerations	7				
	1.3.	Poloidal o	divertor	8				
		1.3.1.	Physics issues	8				
		1.3.2.	Engineering trade-off studies	8				
	1.4.	Pumped 1	limiter	11				
	1.5.	Reference	e impurity control system	12				
2.	RF he	ating and c	current drive	12				
	2.1.	Heating t	o ignition	12				
	2.2.	Non-indu	ctive current drive	13				
	2.3.	Startup a	ssist and profile control	15				
	2.4.	Launcher	design concepts	15				
3.	Transi	ent electro	magnetics	16				
	3.1.	Plasma st	abilization	17				
	3.2.	Startup		18				
	3.3.	Disruptio	n	18				
4.	Mainta	ainability		18				
	4.1.	Assessme	nt and analysis for the different maintenance					
		concepts		19				
		4.1.1.	Design requirements and assumption for both					
			maintenance concepts	19				
		4.1.2.	Tritium containment and cleanup	19				
		4.1.3.	Bakeout and pumpdown criteria	19				
		4.1.4.	Atmospheric tritium recovery	20				
		4.1.5.	Shielding requirements and machine configuration.	21				
		4.1.6.	Maintenance scenarios	21				
		4.1.7.	Maintenance equipment	21				
	4.2. Comparison of both design approaches							

5.	Technical benefit of partitioning INTOR component design and					
	fabrication					
6.	Physic	cs data base	24			
	6.1. Stability limits					
	6.2.	Non-DT contributions to beta	25			
	6.3.	Confinement	25			
		6.3.1. Energy confinement	25			
		6.3.2. Particle confinement	27			
		6.3.3. Momentum confinement	27			
	6.4.	Neutral-beam heating and current drive	29			
	6.5.	Operation scenario	29			
	6.6.	Burning plasma	30			
	6.7.	Plasma diagnostics	30			
7.	Engine	eering data base	31			
	7.1.	Systems engineering	31			
	7.2.	Magnets	31			
	7.3.	Vacuum enclosure and vacuum technology	33			
	7.4.	Neutral-beam heating systems	33			
	7.5.	Pellet injection	34			
	7.6.	Radiation-hardened diagnostics and instrumentation	34			
8.	Nuclea	ar data base assessment	34			
	8.1.	Blanket	34			
	8.2.	Shield	38			
	8.3.	Tritium	39			
	8.4.	Safety	39			
9.	INTO	R role and objectives	41			
	9.1.	Role of INTOR in the fusion programme	41			
	9.2.	INTOR objectives	43			
10.	Design	n concept	45			
11.	Operat	ation and test programme	51			
	11.1.	Operational requirements	51			
		11.1.1. Fluence requirements for structural materials				
		radiation damage tests	52			
		11.1.2. Blanket testing requirements	52			
		11.1.3. Long-term operation component reliability	54			
	11.2.	Operation schedule and test programme	54			
III.	IMPU	RITY CONTROL	55			
0	Ter 1	An Alta a	- -			
0.	Introd	auction	55 55			
1.	impur	Letro duction to physics	55 55			
	1.1.	Delaided divertor	22 50			
	1.2.	roioidal divertor	38			

	1.2.1.	Experime	ental data base for poloidal divertors	60
		1.2.1.1.	Credibility of high-recycling regime	60
		1.2.1.2.	Credibility of high recycling in an	
			open geometry	64
		1.2.1.3.	Plasma edge conditions in the 'H-mode'	65
		1.2.1.4.	Impurity control	66
		1215	Power balance	68
		1216	Gas pumping from the divertor	69
		12110	Scrape-off and divertor plasma	0,
		1.2.1./.	transport	70
	122	Divertor	modelling	70
	1.2.2.	1221	Two-dimensional models	71
		1.2.2.1.	Modelling of ASDEY	73
		1.2.2.2.	Modelling of PDY	73
		1.2.2.3.	Modelling of Doublet III	75
		1.2.2.4.	Conclusions of interpretative modelling	75 77
	1 2 2	Dradiativ	conclusions of interpretative modeling	//
	1.2.3.	Fleuletiv	e modelling of the single-hull poloidal	70
			No dolling of the high require in INIOR	/8
		1.2.3.1.	Modelling of the high-recycling regime	/0
		1.2.3.2.	Impurity transport in INTOR	80
		1.2.3.3.	Pumping of helium	88
		1.2.3.4.	Optimization of geometry	88
		1.2.3.5.	Conclusions from modelling	88
	1.2.4.	Impact u	pon the design concept	89
		1.2.4.1.	Height of divertor chamber	89
		1.2.4.2.	Comparison of single- and double-null	
			divertors	90
1.3.	Limiter	••••••		91
	1.3.1.	Experime	ental data base for limiters	91
		1.3.1.1.	Impurity control	92
		1.3.1.2.	Pumping performance	93
		1.3.1.3.	Effect upon plasma confinement	94
		1.3.1.4.	Scrape-off plasma conditions	96
	1.3.2.	Limiter r	nodelling	97
	1.3.3.	Two-dim	ensional predictive modelling	98
	1.3.4.	Impact u	pon the INTOR design concept	99
1.4.	Innovati	ve schemes		99
	1.4.1.	Data on e	electric field effects	99
	1.4.2.	Data on e	ergodic limiters	100
	1.4.3.	Experime	ental data and modelling of the bundle	
		divertor	~	101
		1.4.3.1.	Performance of divertor	102
		1.4.3.2.	Models and their validation	104
		1.4.3.3	Extrapolation to INTOR	105

		1.4.4.	Data on I	RF pumpout	105	
		1.4.5.	Data on f	low reversal	106	
		1.4.6.	Liquid ar	d droplet limiters	107	
	1.5.	Fuelling			108	
		1.5.1.	Data on g	gas fuelling	109	
		1.5.2.	Data on p	pellet injection	110	
	1.6.	Basic scie	ence data		110	
		1.6.1.	Atomic p	processes	111	
			1.6.1.1.	Electron collisions with hydrogen	111	
			1612	Proton collisions with hydrogen stoms	112	
			1.6.1.2.	Floatron collisions with impurity	112	
			1.0.1.3.	energies	113	
			1614	Callisians between bydroson stoms	115	
			1.0.1.4.	consions between hydrogen atoms	114	
			1615	Callisians between protons and	114	
			1.0.1.3.	impurity ions	115	
			1616	Impurity ions	115	
			1.0.1.0.	Interactions with hydrogen molecules	115	
		160	1.0.1./.	sources of data	116	
		1.0.2.	Basia dat	a for plasma transport	110	
	1 7	1.0.3. Data an i	Dasic dat	a for plasma transport	119	
	1./.	Data on v		see preparation	120	
2	1.8. Euciu	Physics c	onclusions	and K and D	121	
2.	Engin	eering	••••••••••••••••••••••••••••••••••••••		125	
	2.1.	Introduc	tion		125	
	2.2.	Operatin	g condition	ns	125	
		2.2.1.	Common	parameters	120	
	2.2	2.2.2. High-recycling divertor and first wall				
	2.3.		t instant	ration	129	
		2.3.1.	Limiter	••••••	129	
		2.3.2.		D1-4-	131	
			2.3.2.1.	Chamber	131	
	2.4	Madautata	2.3.2.2.	Chamber	134	
	2.4.		Structure	lions	134	
		2.4.1.		Deviced and machanical properties	124	
			2.4.1.1.	Irradiation properties	134	
			2.4.1.2.	Coolant compatibility	125	
			2.4.1.3.	Hydrogen permeation and	155	
			2.7.1.7.	ambrittlement	125	
		212	Diasma a	de materials	135	
		2.4.2.	2 A 2 1	Physical and mechanical data	126	
			2.7.2.1.	Involution offoots	130	
			2.4.2.2.		130	

	105			2.4.2.3.	Sputtering coefficients	136
	106			2.4.2.4.	Hydrogen permeation and	
	107				embrittlement	136
	108	2.5.	Fabricati	ion		137
	109		2.5.1.	Structura	l materials	137
	110		2.5.2.	Plasma si	de materials	138
	110		2.5.3.	Bımetalli	c bonds	138
	111	2.6.	Thermal	hvdraulic	and stress analysis	141
••••			2.6.1.	Divertor	temperature distribution	141
	111		2.6.2.	Divertor	stress distribution	141
•••••	112		2.6.3.	Alternati	ve coolants	144
5	112	2.7.	Electron	agnetics		146
	113	2.7.	Disruption	ngheties	•••••••••••••••••••••••••••••••••••••••	140
••••	115	2.0.	281	Thermal	response	147
	114		2.0.1.	Liquid_m	etal kinetica	14/
••••	114		2.0.2.	2821	Hydrodynamic instability of the	140
	115			2.0.2.1.	molt lower	140
••••	115			1811	Molt layer movement	149
••••	115			2.0.2.2.	Helium huhhle formation	150
•••••	116		202	2.0.2.3. Even amina	nelium bubble formation	150
	116	2.0	2.0.3. Smittania	Experime	ental and metallurgical observations	151
•••••	119	2.9.	Sputtern	ig erosion/		153
••••	120		2.9.1.	Erosion a	nd deposition profiles	153
•••••	121		2.9.2.	Models a	nd calculations	153
	125	• • •	2.9.3.	Propertie	s of redeposited materials	154
	125	2.10.	Lifetime	analysis		155
	125		2.10.1.	Divertor		156
	125		2.10.2.	First wall		158
•••••	129		2.10.3.	Long-pul	se operation	161
	129	2.11.	Tritium p	permeation		162
	129		2.11.1.	Through	divertor	163
	131		2.11.2.	Through	fırst wall	163
	131	2.12.	Vacuum	pumping		164
	134		2.12.1.	Requiren	ients	164
	134		2.12.2.	Vacuum	pumps and pumping efficiency	164
	134		2.12.3.	Thermali	zation of divertor exhaust	165
	134	2.13.	Alternatı	ve concept	s	166
	134		2.13.1.	Evaluatio	n of a copper-lithium alloy for use	
	135			in the IN	FOR impurity control system	166
			2.13.2.	Self-pum	ping of helium by in-situ metal	
	135			depositio	n	167
	136		2.13.3.	Divertor of	concepts with collector plates covered	
	136			by liquid-	metal film	167
	126					

	2.14.	Data base		169		2.2.
		2.14.1.	Impurity control and first-wall design			
			requirements	169		
		2.14.2.	Reviews	169		
			2.14.2.1. Review of Phase Zero, One and Two A			
			assessments	169		
			2.14.2.2. Review of data base	172		
		2.14.3.	R and D requirements	186		
			2.14.3.1. Present R and D to five years ahead	186		
			2.14.3.2. Test facilities	187		
			2.14.3.3. Needed R and D programmes	188		2.3.
3.	Conclu	isions		189		
Refe	erences	to Chapter	· III	190		
IV.	RF HI	EATING A	ND CURRENT DRIVE	191		2.4.
1	Ion cv	clotron wa		101	3	. Elect
1.	1011 Cy	INTOR d	lesign assumptions and parameters	171		3.1.
	1.1.	(Phase Ty	$x \circ \Delta$ Part 1)	191		
	12	Data base	and application to INTOR	101		3.2.
	1.2.	121	Plasma heating	101		
		1.2.1.	1.2.1.1 Experimental status	191		
			1.2.1.2 Theory and modelling	191		
			1.2.1.2. Comparison between models and	190		
			avagriments	100		
			1.2.1.4 Modelling applications to INTOP	201		
		1 2 2	Stortup aggist	201		
		1.2.2.	Current drive	204		
		1.2.3.	Lounshon dougn and technology	204		
		1.2.4.	Characteristics and concents of INTOP laurehore	205		3.3.
	12	1.2.3. P and D	characteristics and concepts of INTOR launchers	209		
	1.5.		Organing programmed and expected education	211		
		1.3.1.	1.2.1.1.* Drawing	211		
			1.2.1.2 Tashnalagy	211		
		122	Additional P and D noods	211		
		1.5.2.	1 2 2 1 Dhysics	212		
			1.3.2.1. Flysics	213		3.4.
	14	Conclusi	1.3.2.2. ICOMOLOGY	215	4	. Othe
2	Lower	hybrid wa		215		4.1.
۷.		INTOD 4	logian accumptions and narrowstors	214		4.2.
	2.1.	(Dhese T-	us A Port 1)	214		
		(rnase I)	WO A Falt 17	214		

2.2.	Data ba	se and application to INTOR	214
	2.2.1.	Plasma heating and current drive	214
		2.2.1.1. Experimental status	214
		2.2.1.2. Theory and modelling	222
		2.2.1.3. Comparison between models and	
		experiment	226
		2.2.1.4. Modelling applications to INTOR	229
	2.2.2.	Non-inductive startup and startup assist	231
	2.2.3.	Launcher design and technology	232
	2.2.8.	Characteristics and concents of INTOR launchers	235
23	R and F) programmes	236
2.0.	231	Ongoing programmes and expected advances	236
	2.3.1.	2 3 1 1 Physics	236
		2.3.1.2 Technology	230
	232	Additional P and D needs	237
	2.3.2.	2 3 2 1 Physics	239
		2.3.2.1. Thysics	239
24	Conclus	2.3.2.2. Technology	239
2.4. Electr			239
		ron waves	241
3.1.		design assumptions and parameters	
2.2	(Phase)	Iwo A Part I)	241
3.2.	Data ba	se and application to INTOR	242
	3.2.1.	Plasma heating	242
		3.2.1.1. Experimental status	242
		3.2.1.2. Theory and modelling	243
		3.2.1 3. Comparison between models and	
		experiments	244
	3.2.2.	Startup assist	244
	3.2.3.	Current drive	246
	3.2.4.	Launcher design and technology	246
	3.2.5.	Characteristics and concepts of INTOR launchers	247
3.3.	R and D) programmes	249
	3.3.1.	Ongoing programmes and expected advances	249
		3.3.1.1. Physics	249
		3.3.1.2. Technology	250
	3.3.2.	Additional R and D needs	250
		3.3.2.1. Physics	250
		3.3.2.2. Technology	250
3.4.	Conclus	nons for INTOR	251
Other	methods	for heating and/or current drive	251
4.1.	Introdu	ctory remarks	251
4.2.	Data ba	se assessment	251
	4.2.1.	Alfvén waves	251
	4.2.2.	Adiabatic compression	254
		<u>r</u>	-

		4.2.3.	Magnetic pumping	255
		4.2.4.	Turbulent heating	255
		4.2.5.	Electron beams	256
		4.2.6.	Cyclotron radiation	257
Ref	erences	to Chapte	r IV	257
V.	TRAN	SIENT E	LECTROMAGNETICS	259
1.	Introd	uction .		259
2.	Plasma	a stabilızat	ion	260
	2.1.	Summar	y of plasma stabilization experimental experience	261
	2.2.	Vertical	stabilization	264
		2.2.1.	Stability analysis	264
		2.2.2.	Active coil system	273
		2.2.3.	Benchmark calculations	281
	2.3.	Radial p	osition control	283
3.	Startu	р		287
	3.1.	Electric	and magnetic field penetration	288
		3.1.1.	Electric field penetration	288
		3.1.2.	Magnetic field penetration	291
	3.2.	Paramet	ric studies	291
4.	Plasma	a disruptic	on effects	298
	4.1.	Comput	ational models	298
	4.2.	Induced	currents	299
	4.3.	Induced	forces	304
	4.4.	Induced	voltages	307
	4.5.	Benchma	ark calculations	308
5.	Conclu	usions		309
	5.1.	Plasma s	tabilization	309
	5.2.	Startup		310
	5.3.	Disrupti	ons	311
	5.4.	Design g	uidelines	311
		5.4.1.	Plasma vertical stabilization	311
		5.4.2.	Startup	312
		5.4.3.	Disruption	313
6.	Data b	ase assess	ment	313
	6.1.	INTOR	design requirements	313
	6.2.	Analytic	al tools – data base assessment	314
		6.2.1.	Startup (distributed plasma current with motion	
			and deformation)	314
		6.2.2.	Startup and disruption eddy current effects	314
		6.2.3.	Plasma vertical stability	314

	6.2.4.	Analytical tools – R and D programmes	315
	6.2.5.	Coupled electromagnetic/mechanical/transient	
		code development	315
	6.2.6.	Axisymmetric plasma evolution code	
		development	315
	6.2.7.	2D/3D electromagnetic code upgrades and	
		development	315
	6.2.8.	Code for multiple coil safety and protection	
		analysis	316
	6.2.9.	Analytical tools – impact on INTOR	316
6.3.	Experin	nental data – data base assessment	316
	6.3.1.	Arcing voltage	316
	6.3.2.	Experimental data for code validation	316
	6.3.3.	Radiation effects	316
	6.3.4.	Inorganic insulation	317
	6.3.5.	Conductors	317
	6.3.6.	Experimental data – impact on INTOR	
		reference designs	318
6.4.	Fast pul	lse power supply technology – data base assessment	319
	6.4.1.	Fast pulse power supply technology – impact on	
		INTOR reference design	319
Dafanan			
References	to Chapte	er v	319

VI.	MAIN	TAINABI	LITY	321			
1.	Introd	luction .		321			
	1.1.	Backgro	und	321			
	1.2.	Purpose	of the study	323			
	1.3.	General requirements and considerations					
	1.4.	4. Configuration parameters					
	1.5.	Mainten	ance requirements and scenarios considered	325			
		1.5.1.	Personnel access maintenance considerations	325			
		1.5.2.	All-remote maintenance considerations	326			
		1.5.3.	Miscellaneous assumptions common to both				
			designs	326			
2.	Assess	ment and	analysis for the different maintenance concepts	327			
	2.1.	Design r	equirements and assumptions for both				
		mainten	ance concepts	327			
		2.1.1.	Requirements and assumptions	327			
		2.1.2.	Tritium releases into the reactor hall from				
			various sources	328			

	2.1.3.	Radiation source from coolant leakage	328
		leakage from INTOR water-coolant	
			278
			221
	014	2.1.3.2. Impact on personnel access	221
	2.1.4.	Radiation shielding	331
		2.1.4.1. Shield requirements	331
		2.1.4.2. Radiation protection of the	
		environment during operation and	
		maintenance	333
	2.1.5.	Radiological guidelines and limits	333
	2.1.6.	Control of radioactive particulates	334
		2.1.6.1. Background	334
		2.1.6.2. Impact on maintenance operations	334
2.2.	Tritium c	confinement and cleanup	335
	2.2.1.	Location and confinement boundaries for tritium	
		and contaminated dust during operation and	
		maintenance	335
	2.2.2.	Bakeout and pumpdown criteria	337
	2.2.3.	Atmospheric tritium recovery	340
2.3.	Shielding	requirements	343
	2.3.1.	Radiation protection of the environment	
		during operation and maintenance	343
	2.3.2.	Shield optimization	345
	2.3.3.	Problems of streaming through the divertor	
	_	and RF launchers	348
2.4.	Reactor of	configuration and facility layouts	353
	2.4.1.	All-remote configuration development	353
	2.4.2.	Reactor building layout	357
	2.4.3.	Triting method by heilding	360
25	2.4.4. Maintana	I ritium system building	301
2.5.		A summetic and necessary time	301
	2.5.1.	Assumptions	301
	2.3.2.	replacement	367
		2.5.2.1 Divertor module replacement	265
		2.5.2.1. Diversion module replacement	305
		replacement	366
		2.5.2.3. Cryopump module replacement	366
		2.5.2.4: Test module replacement	367
		2.5.2.5. Torus sector replacement	367
	0.5.0	2.5.2.6. TF coil replacement	367
	2.5.3.	Lifetime dose estimate and downtime for	270
	254	reactor cell maintenance	370
	2.3.4.	Comparison of downtime and exposure	3/1

	2.6.	Maintena	ance equipment	372
		2.6.1.	Maintenance equipment requirements	372
		2.6.2.	Listing of maintenance equipment	374
		2.6.3.	Recovery of maintenance equipment in case	
			of failure	376
3.	Compa	arison of t	he two concepts	378
	3.1.	Basis of o	comparison	379
	3.2.	Maintena	ance equipment requirements	379
	3.3.	Reactor	availability	380
	3.4.	Safety		380
	3.5.	Flexibili	ty of operations	380
	3.6.	Costs		381
	3.7.	General	conclusions	382
4.	Data b	ase assessi	ments for remote-handling technology	385
	4.1.	INTOR of	design requirements	385
	4.2.	Data bas	e assessment	385
		4.2.1.	Computer-aided robotic design and simulation	386
		4.2.2.	Manipulators and current robotics technology	
			including heavy-duty manipulators, lifting and	
			transport systems	387
		4.2.3.	Cutting, welding, mechanical joining, electrical	
			connecting and tooling systems	389
		4.2.4.	Sensing, lighting, viewing, leak detecting,	
			testing and inspection systems	391
		4.2.5.	Advanced computer-aided teleoperation, including	
			artificial intelligence systems	392
		4.2.6.	Special equipment for teleoperation in	
			hostile environment	393
		4.2.7.	Reliability, availability and maintainability data	394
	4.3.	R and D	programmes	394
	4.4.	Impact o	on INTOR design concept	395
		-		

References to Chapter VI

Purpo	ose and sco	ре
Tech	nical benef	it definition
Assur	nptions an	d approaches
3.1.	Assump	tions
	3.1.1.	Reference organization scheme
	3.1.2.	Partitioning scenarios
	3.1.3.	Further common basis for evaluations

3.2.1. Cost evaluation methods 4 3.2.1.1. Cost evaluation (EC) 4 3.2.1.2. Cost evaluation (USS) 4 3.2.1.3. Cost evaluation (USSR) 4 3.2.1.4. Cost evaluation (USSR) 4 3.2.2.1. Schedule evaluation (EC) 4 3.2.2.1. Schedule evaluation (ISSR) 4 3.2.2.1. Schedule evaluation (USSR) 4 3.2.2.3. Schedule evaluation (USSR) 4 3.2.2.4. Schedule evaluation (USSR) 4 3.2.3. Consideration of technical benefit 4 3.2.4. Quantification of technical benefit 4 3.3.1. Components/subsystems questionnaires 4 3.3.2. Questionnaires on project planning/implementation 4 3.3.1. Ecomponents/subsystems questionnaires 4 4.1.1. EC evaluation 4 4 4.1.2. Japanese evaluation 4 4 4.1.2. Japanese evaluation 4 4 4.1.4. USSR evaluation 4 4 4 5.		3.2.	Approach	les
3.2.1.1. Cost evaluation (EC) 4 3.2.1.2. Cost evaluation (Us) 4 3.2.1.3. Cost evaluation (US) 4 3.2.1.4. Cost evaluation (USSR) 4 3.2.2. Schedule evaluation methods 4 3.2.2.1. Schedule evaluation (EC) 4 3.2.2.3. Schedule evaluation (USSR) 4 3.2.2.4. Schedule evaluation (USSR) 4 3.2.3. Schedule evaluation (US) 4 3.2.4. Schedule evaluation (USSR) 4 3.2.3. Consideration of additional manpower 4 3.2.4. Quantification of technical benefit 4 3.3.1. Components/subsystems questionnaires 4 3.3.1. Components/subsystems questionnaires 4 4.1.1. Evaluation 4 4 4.1.2. Japanese evaluation 4 4 4.1.3. US evaluation 4 4 4.1.4. USSR evaluation 4 4 4.1.3. US evaluation 4 4 5. Other large projects' experience			3.2.1.	Cost evaluation methods
3.2.1.2. Cost evaluation (Japan) 4 3.2.1.3. Cost evaluation (USS) 4 3.2.1.4. Cost evaluation (USSR) 4 3.2.2. Schedule evaluation methods 4 3.2.2.1. Schedule evaluation (Iapan) 4 3.2.2.2. Schedule evaluation (USSR) 4 3.2.2.3. Schedule evaluation (USSR) 4 3.2.2.4. Schedule evaluation (USSR) 4 3.2.3. Consideration of technical benefit 4 3.2.4. Quantification of technical benefit 4 3.3.1. Components/subsystems questionnaires 4 3.3.2. Questionnaires on project planning/implementation and quality production 4 4.1.1. EC evaluation 4 4.1.1. 4.1.2. Japanese evaluation 4 4 4.1.3. US evaluation 4 4 4.1.4. USSR evaluation 4 4 4.1.4. USSR evaluation 4 4 4.1.5. US evaluation 4 4 4 4.1.4. US evaluation 4 4 <				3.2.1.1. Cost evaluation (EC)
3.2.1.3. Cost evaluation (US) 4 3.2.1.4. Cost evaluation (USSR) 4 3.2.2.1. Schedule evaluation (USSR) 4 3.2.2.1. Schedule evaluation (EC) 4 3.2.2.2. Schedule evaluation (US) 4 3.2.2.3. Schedule evaluation (USSR) 4 3.2.2.4. Schedule evaluation (USSR) 4 3.2.2.4. Schedule evaluation (USSR) 4 3.2.3. Consideration of additional manpower 4 3.2.4. Quantification of technical benefit 4 3.3.1. Components/subsystems questionnaires 4 3.3.2. Questionnaires on project planning/implementation and quality production 4 4.1. Cost 4 4.1.1. 4.1.2. Japanese evaluation 4 4.1.2. 4.1.3. US evaluation 4 4.2. 5. Other large projects' experience 4 4 5. Onclusions 4 4 4.1.4. USSR evaluation 4 4 5. Other large projects' experience 4 5 </td <td></td> <td></td> <td></td> <td>3.2.1.2. Cost evaluation (Japan)</td>				3.2.1.2. Cost evaluation (Japan)
3.2.1.4. Cost evaluation (USSR) 4 3.2.2. Schedule evaluation methods 4 3.2.2.1. Schedule evaluation (Japan) 4 3.2.2.2. Schedule evaluation (US) 4 3.2.2.3. Schedule evaluation (USSR) 4 3.2.2.4. Schedule evaluation (USSR) 4 3.2.2.4. Schedule evaluation (USSR) 4 3.2.2.4. Schedule evaluation (USSR) 4 3.2.3. Consideration of additional manpower 4 3.2.4. Quantification of technical benefit 4 3.3.1. Components/subsystems questionnaires 4 3.3.2. Questionnaires on project planning/implementation and quality production 4 4. Evaluation results 4 4.1.2. Japanese evaluation 4 4.1.2. Japanese evaluation 4 4.1.3. US evaluation 4 4.1.2. Japanese evaluation 4 4.1.4. USSR evaluation 4 4.1.4. USSR evaluation 4 4.1.4. 4 4 5. Conclusions 4 5. Conclusions				3.2.1.3. Cost evaluation (US)
3.2.2. Schedule evaluation methods 4 3.2.2.1. Schedule evaluation (EC) 4 3.2.2.2. Schedule evaluation (Japan) 4 3.2.2.3. Schedule evaluation (US) 4 3.2.2.4. Schedule evaluation (USSR) 4 3.2.3. Consideration of additional manpower 4 3.2.4. Quantification of technical benefit 4 3.3.1. Components/subsystems questionnaires 4 3.3.2. Questionnaires on project planning/implementation and quality production 4 4.1.1. EC evaluation 4 4.1.2. Japanese evaluation 4 4.1.3. US evaluation 4 4.1.4. USSR evaluation 4 4.1.3. US evaluation 4 4.1.4. USSR evaluation 4 4.2. Schedule 4 4.3. Benefit 4 5. Conclusions 4 4.1.4. USSR evaluation 4 4.2. Schedule 4 4.3. Benefit 4 5.				3.2.1.4. Cost evaluation (USSR)
3.2.2.1. Schedule evaluation (EC) 4 3.2.2.2. Schedule evaluation (Japan) 4 3.2.2.3. Schedule evaluation (USS) 4 3.2.2.4. Schedule evaluation (USSR) 4 3.2.2.4. Consideration of additional manpower 4 3.2.2.4. Quantification of technical benefit 4 3.2.3. Consideration of additional manpower 4 3.3.1. Components/subsystems questionnaires 4 3.3.1. Components/subsystems questionnaires 4 3.3.2. Questionnaires on project planning/implementation 4 4.1.1. EC evaluation 4 4.1.2. Japanese evaluation 4 4.1.3. US evaluation 4 4.1.4. USSR evaluation 4 4.1.3. US evaluation 4 4.2. Schedule 4 4.3. Benefit 4 5. Other large projects' experience 4 6. Conclusions 4 7. Other large projects' experience 4 6. Conclusions 4			3.2.2.	Schedule evaluation methods
3.2.2.2. Schedule evaluation (Japan) 4 3.2.2.3. Schedule evaluation (US) 4 3.2.3. Consideration of additional manpower 4 3.2.4. Quantification of technical benefit 4 3.2.4. Quantification of technical benefit 4 3.2.4. Quantification of technical benefit 4 3.3.1. Components/subsystems questionnaires 4 3.3.2. Questionnaires on project planning/implementation and quality production 4 4. Evaluation results 4 4.1. 4.1.1. EC evaluation 4 4.1.2. 4.1.2. Japanese evaluation 4 4.1.3. US evaluation 4.1.4. USSR evaluation 4 4.2. Schedule 4 4.3. Benefit 4 4 5. Other large projects' experience 4 5. Other large projects' experience 4 5. Conclusions 4 4.1.4. USSR evaluation and parameters 4 4 4 4 4.1.5. UHI-A1 to VII-A10 4 4 4 4 <td></td> <td></td> <td></td> <td>3.2.2.1. Schedule evaluation (EC)</td>				3.2.2.1. Schedule evaluation (EC)
3.2.2.3. Schedule evaluation (US) 4 3.2.2.4. Schedule evaluation (USSR) 4 3.2.3. Consideration of additional mappower 4 3.2.4. Quantification of technical benefit 4 3.3.1. Components/subsystems questionnaires 4 3.3.2. Questionnaires on project planning/implementation and quality production 4 4. Cost 4 4 4.1.1. EC evaluation 4 4.1.2. Japanese evaluation 4 4.1.3. US evaluation 4 4.1.4. USSR evaluation 4 4.2. Schedule 4 4.3.3. Benefit 4 5. Other large projects' experience 4 6. Conclusions 4 7. Data base 4 1.1.1. INTOR design assumptions and parameters 4 1.2.1.2. Theory 4 1.2.1.3. Comparisons and conclusions 4 1.2.2. Density limits 4 1.2.1.2. Theory 4				3.2.2.2. Schedule evaluation (Japan)
3.2.2.4. Schedule evaluation (USSR) 4 3.2.3. Consideration of additional manpower 4 3.2.4. Quantification of technical benefit 4 3.3.1. Components/subsystems questionnaires 4 3.3.1. Components/subsystems questionnaires 4 3.3.2. Questionnaires on project planning/implementation and quality production 4 4.1. Cost 4 4.1.1. EC evaluation 4 4.1.2. Japanese evaluation 4 4.1.3. US evaluation 4 4.1.4. USSR evaluation 4 4.1.5. Schedule 4 4.1.4. USSR evaluation 4 4.1.4. USSR evaluation 4 4.2. Schedule 4 5. Other large projects' experience 4 5. Conclusions 4 6. Conclusions 4 1.1. INTOR design assumptions and parameters 4 (Phase Two A Part 1) 4 4 1.2.1. Beta limits 4 1.2.1.1				3.2.2.3. Schedule evaluation (US)
3.2.3. Consideration of additional manpower 4 3.2.4. Quantification of technical benefit 4 3.3. Information input (summary) 4 3.3.1. Components/subsystems questionnaires 4 3.3.2. Questionnaires on project planning/implementation and quality production 4 4.1.1. EC evaluation 4 4.1.2. Japanese evaluation 4 4.1.3. US evaluation 4 4.1.4. USSR evaluation 4 4.1.3. US evaluation 4 4.1.4. USSR evaluation 4 4.1.3. Benefit 4 5. Other large projects' experience 4 6. Conclusions 4 7. Tables VII-A1 to VII-A10 4 4.1.1. INTOR design assumptions and parameters 4 1.1. INTOR design assumptions and parameters 4 1.2.1.3. Comparisons and conclusions 4 1.2.1.4. Experimental status 4 1.2.1.3. Comparisons and conclusions 4 1.2.2.0 Den				3.2.2.4. Schedule evaluation (USSR)
3.2.4. Quantification of technical benefit 4 3.3. Information input (summary) 4 3.3.1. Components/subsystems questionnaires 4 3.3.2. Questionnaires on project planning/implementation and quality production 4 4. Evaluation results 4 4.1. Cost 4 4.1.1. EC evaluation 4 4.1.2. Japanese evaluation 4 4.1.3. US evaluation 4 4.1.4. USSR evaluation 4 4.2. Schedule 4 4.3. Benefit 4 5. Conclusions 4 6. Conclusions 4 7. Compter VII 4 4.1. INTOR design assumptions and parameters 4 1.1. INTOR design assumptions and parameters 4 1.2.1.1. Experimental status 4 1.2.1.2. Theory 4 1.2.1.3. Comparisons and conclusions 4 1.2.2.1. Experimental status 4 1.2.2.1. Experime			3.2.3.	Consideration of additional manpower
3.3. Information input (summary) 4 3.3.1. Components/subsystems questionnaires 4 3.3.2. Questionnaires on project planning/implementation and quality production 4 4.1. Cost 4 4.1.1. EC evaluation 4 4.1.2. Japanese evaluation 4 4.1.3. US evaluation 4 4.1.4. USSR evaluation 4 4.1.3. Benefit 4 4.3. Benefit 4 5. Other large projects' experience 4 6. Conclusions 4 7. Other large projects' experience 4 6. Conclusions 4 7. Other large projects' experience 4 6. Conclusions 4 7. Other large projects' experience 4 6. Conclusions 4 7. Conductor VII 4 4. Appendix to Chapter VII: Tables VII-A1 to VII-A10 4 1.1. INTOR design assumptions and parameters 4 1.2.1.1. <td< td=""><td></td><td></td><td>3.2.4</td><td>Quantification of technical benefit</td></td<>			3.2.4	Quantification of technical benefit
3.3.1. Components/subsystems questionnaires 4 3.3.2. Questionnaires on project planning/implementation and quality production 4 4. Evaluation results 4 4.1. Cost 4 4.1.1. EC evaluation 4 4.1.2. Japanese evaluation 4 4.1.3. US evaluation 4 4.1.4. USSR evaluation 4 4.3. Benefit 4 5. Other large projects' experience 4 6. Conclusions 4 7. Other VII 4 4.1.4. USSR evaluation 4 4.3. Benefit 4 5. Other large projects' experience 4 6. Conclusions 4 7. Componenter VII 4 4. Appendix to Chapter VII: Tables VII-A1 to VII-A10 4 1.1. INTOR design assumptions and parameters 4 1.2.1. Beta limits 4 1.2.1.1. Experimental status 4 1.2.1.2. Theory 4		33	Informati	on input (summary)
3.3.2. Questionnaires on project planning/implementation and quality production 4 4. Evaluation results 4 4.1. Cost 4 4.1.1. EC evaluation 4 4.1.2. Japanese evaluation 4 4.1.3. US evaluation 4 4.1.4. USSR evaluation 4 4.2. Schedule 4 4.3. Benefit 4 5. Other large projects' experience 4 6. Conclusions 4 7. Conclusions 4 9. Conclusions 4 1.1 INTOR design assumptions and parameters (Phase Two A Part 1) 4 1.2.1.1 Experimental status 4 1.2.1.2 Theory 4 1.2.2.1 Experimental status 4 1.2.2.1 Experimental status 4 1.2.2.1 Theory 4 1.2.2.1 Theory 4 1.2.2.1 Theory 4 1.2.2.1 Theory 4 1.2.2.2 Theo		0.0.	3 3 1	Components/subsystems questionnaires
and quality production 4 4. Evaluation results 4 4.1. Cost 4 4.1.2. Japanese evaluation 4 4.1.3. US evaluation 4 4.1.4. USSR evaluation 4 4.2. Schedule 4 4.3. Benefit 4 5. Other large projects' experience 4 6. Conclusions 4 7. Conclusions 4 9. Conclusions 4 10. Stability limits 4 11. INTOR design assumptions and parameters 4 12.1.1 Experimental status 4 12.1.2 Theory 4 12.2.1.2 Theory 4 12.2.2.1 Theory 4 <td< td=""><td></td><td></td><td>332</td><td>Questionnaires on project planning/implementation</td></td<>			332	Questionnaires on project planning/implementation
4. Evaluation results 4 4.1. Cost 4 4.1.1. EC evaluation 4 4.1.2. Japanese evaluation 4 4.1.3. US evaluation 4 4.1.4. USSR evaluation 4 4.2. Schedule 4 4.3. Benefit 4 5. Other large projects' experience 4 6. Conclusions 4 7. Other large projects' experience 4 6. Conclusions 4 7. Other large projects' experience 4 6. Conclusions 4 7. Other large projects' experience 4 6. Conclusions 4 7. Other large projects' experience 4 7. Other large projects' experience 4 6. Conclusions 4 7. Other large projects' experience 4 8. Other large projects' experience 4 1.1. INTOR design assumptions and parameters 4			5.5.4.	and quality production
4.1. Cost 4 4.1.1. EC evaluation 4 4.1.2. Japanese evaluation 4 4.1.3. US evaluation 4 4.1.4. USSR evaluation 4 4.3. Benefit 4 5. Other large projects' experience 4 6. Conclusions 4 7. Other large projects' experience 4 6. Conclusions 4 7. Other large projects' experience 4 6. Conclusions 4 7. Other large projects' experience 4 6. Conclusions 4 7. Conclusions 4 7. Conclusions 4 7. Conclusions 4 1. Tables VII-A1 to VII-A10 4 4. Appendix to Chapter VII: Tables VII-A1 to VII-A10 4 1.1. INTOR design assumptions and parameters 4 1.2.1.1 4 1.2. Data base 4 1.2.1.1 4 1.2.1.2. 4 <tr< td=""><td>Л</td><td>Evoluo</td><td>tion result</td><td></td></tr<>	Л	Evoluo	tion result	
4.1. Cost 4 4.1.1. EC evaluation 4 4.1.2. Japanese evaluation 4 4.1.3. US evaluation 4 4.1.4. USSR evaluation 4 4.2. Schedule 4 4.3. Benefit 4 5. Other large projects' experience 4 6. Conclusions 4 7. Conclusions 4 4.1. In Chapter VII 4 4.1. VIII. PHYSICS 4 1. Stability limits 4 1.1. INTOR design assumptions and parameters 4 1.2. Data base 4 1.2.1. Beta limits 4 1.2.1. Experimental status 4 1.2.1.1. Experimental status 4 1.2.2. Density limits 4 1.2.2. Theory 4 1.2.2.1. Experimental status 4 1.2.2.2. Theory 4 1.2.2.2. Theory 4	+.		Cost	·····
4.1.1. EC evaluation 4 4.1.2. Japanese evaluation 4 4.1.3. US evaluation 4 4.1.4. USSR evaluation 4 4.2. Schedule 4 4.3. Benefit 4 5. Other large projects' experience 4 6. Conclusions 4 7. Other large projects' experience 4 6. Conclusions 4 7. Conclusions 4 8. Conclusions 4 9. Conclusions 4 9. Conclusions 4 1. Conclusions 4 4.1.1. Mappendix to Chapter VII: 7 1. Stability limits 4 1.1. INTOR design assumptions and parameters 4 1.1. INTOR design assumptions and parameters 4 1.2.1.1. Experimental status 4 1.2.1.2. Theory 4 1.2.2.1. Experimental status 4 1.2.2.1. Experimental status		4.1.	COSC	EC analysis
4.1.2. Japanese evaluation 4 4.1.3. US evaluation 4 4.1.4. USSR evaluation 4 4.2. Schedule 4 4.3. Benefit 4 5. Other large projects' experience 4 6. Conclusions 4 7. Other large projects' experience 4 6. Conclusions 4 7. Other large projects' experience 4 6. Conclusions 4 7. Conclusions 4 8. Conclusions 4 4. Appendix to Chapter VII 4 4. Appendix to Chapter VII: Tables VII-A1 to VII-A10 4 VIII. PHYSICS 4 1.1. INTOR design assumptions and parameters 4 1.2.1. Beta limits 4 1.2.1. Beta limits 4 1.2.1.1. Experimental status 4 1.2.2.1. Experimental status 4 1.2.2.1. Experimental status 4 1.2.2.2.			4.1.1.	
4.1.3. US evaluation 4 4.1.4. USSR evaluation 4 4.2. Schedule 4 4.3. Benefit 4 5. Other large projects' experience 4 6. Conclusions 4 7. Other large projects' experience 4 8. Conclusions 4 9. Appendix to Chapter VII: Tables VII-A1 to VII-A10 4 9. Appendix to Chapter VII: Tables VII-A1 to VII-A10 4 10. INTOR design assumptions and parameters 4 11. INTOR design assumptions and parameters 4 12.1.1 Experimental status 4 1.2.1.2 Theory 4 1.2.2.1 Experimenta			4.1.2.	Japanese evaluation
4.1.4. USSR evaluation 4 4.2. Schedule 4 4.3. Benefit 4 5. Other large projects' experience 4 6. Conclusions 4 7. Cher large projects' experience 4 8. Conclusions 4 8. Conclusions 4 9. Comparisons and parameters 4 1.1. INTOR design assumptions and parameters 4 1.2.1. Beta limits 4 1.2.1. Experimental status 4 1.2.1.1. Experimental status 4 1.2.1.2. Theory 4 1.2.2.1. Experimental status 4 1.2.2.1. Experimental status 4 1.2.2.2. Theory 4 1.2.2.2. Theory 4			4.1.3.	US evaluation
4.2. Schedule 4 4.3. Benefit 4 5. Other large projects' experience 4 5. Conclusions 4 References to Chapter VII 4 Appendix to Chapter VII: Tables VII-A1 to VII-A10 4 VIII. PHYSICS 4 1. Stability limits 4 1.1. INTOR design assumptions and parameters 4 (Phase Two A Part 1) 4 1.2.1. Beta limits 4 1.2.1.1. Experimental status 4 1.2.2.2. Theory 4 1.2.2.1. Experimental status 4 1.2.2.2. Theory 4		4.0	4.1.4.	USSR evaluation
4.3. Benefit 4 5. Other large projects' experience 4 5. Conclusions 4 References to Chapter VII 4 Appendix to Chapter VII: Tables VII-A1 to VII-A10 4 VIII. PHYSICS 4 1. Stability limits 4 1.1. INTOR design assumptions and parameters 4 (Phase Two A Part 1) 4 1.2.1. Beta limits 4 1.2.1.2. Theory 4 1.2.2.1. Experimental status 4 1.2.2.1. Experimental status 4 1.2.2.1. Experimental status 4 1.2.2.1. Experimental status 4 1.2.2.2. Theory 4 1.2.2.3. Comparisons and conclusions 4 1.2.2.4. Comparisons and conclusions 4 1.2.2.2. Theory 4 1.2.2.3. Comparisons and conclusions 4 1.2.2.4. Comparisons and conclusions 4 1.2.2.2. Theory 4 1.2.2.3. Comparisons and conclusions 4 1.2.2.4. Comparisons and conclusions 4 1.2.2.3. Comparisons and conclusions 4 1.2.2.3. Comparisons and conclusions		4.2.	Schedule	
b. Other large projects' experience 4 5. Conclusions 4 References to Chapter VII 4 Appendix to Chapter VII: Tables VII-A1 to VII-A10 4 VIII. PHYSICS 4 1. Stability limits 4 1.1. INTOR design assumptions and parameters 4 (Phase Two A Part 1) 4 1.2. Data base 4 1.2.1. Beta limits 4 1.2.1.2. Theory 4 1.2.2.1. Experimental status 4 1.2.2.2. Theory 4 1.2.2.2. Theory 4 1.2.2.2. Theory 4 1.2.2.3. Comparisons and conclusions 4 1.2.2.2. Theory 4 1.2.2.3. Comparisons and conclusions 4 1.2.2.3. Comparisons and conclusions 4 1.2.2.3. Comparisons and conclusions 4 1.2.2.2. Theory 4 1.2.2.3. Comparisons and conclusions 4 1.2.2.3. Commedia trace and conclusions 4 </td <td>-</td> <td>4.3.</td> <td>Benefit</td> <td></td>	-	4.3.	Benefit	
b. Conclusions 4 References to Chapter VII 4 Appendix to Chapter VII: Tables VII-A1 to VII-A10 4 VIII. PHYSICS 4 1. Stability limits 4 1.1. INTOR design assumptions and parameters 4 (Phase Two A Part 1) 4 1.2.1. Beta limits 4 1.2.1.1. Experimental status 4 1.2.2.2. Theory 4 1.2.2.2. Theory 4 1.2.2.2. Theory 4 1.2.2.3. Comparisons and conclusions 4 1.2.2.2. Theory 4 1.2.2.3. Comparisons and conclusions 4 1.2.2.2. Theory 4 1.2.2.3. Comparisons and conclusions 4 1.2.2.3. Comparisons and conclusions 4 1.2.2.3. Comparisons and conclusions 4 1.2.2.2. Theory 4 1.2.2.3. Comparisons and conclusions 4 1.2.2.3. Comparisons and conclusion	5.	Other	large proje	cts' experience
References to Chapter VII 4 Appendix to Chapter VII: Tables VII-A1 to VII-A10 4 VIII. PHYSICS 4 1. Stability limits 4 1.1. INTOR design assumptions and parameters 4 (Phase Two A Part 1) 4 1.2. Data base 4 1.2.1. Beta limits 4 1.2.1.2. Theory 4 1.2.2.1 Experimental status 1.2.2.1 Experimental status 1.2.2.1 Experimental status 1.2.2.2 Theory 4 1.2.2.1 1.2.2.3 Comparisons and conclusions	5.	Conclu	isions	
Appendix to Chapter VII: Tables VII-A1 to VII-A10 4 VIII. PHYSICS 4 1. Stability limits 4 1.1. INTOR design assumptions and parameters 4 (Phase Two A Part 1) 4 1.2. Data base 4 1.2.1. Beta limits 4 1.2.1.2. Theory 4 1.2.2. Density limits 4 1.2.2.1. Experimental status 4 1.2.2.1. Experimental status 4 1.2.2.1. Experimental status 4 1.2.2.2. Theory 4 1.2.2.3. Comparisons and conclusions 4 1.2.2.2. Theory 4 1.2.2.3. Comparisons and conclusions 4	n . f		4. Oli	\$711
Appendix to Chapter VII: Tables VII-A1 to VII-A10 4 VIII. PHYSICS 4 1. Stability limits 4 1.1. INTOR design assumptions and parameters (Phase Two A Part 1) 4 1.2. Data base 4 1.2.1. Beta limits 4 1.2.1.2. Theory 4 1.2.2. Density limits 4 1.2.2. Theory 4 1.2.2. Theory 4 1.2.2. Density limits 4 1.2.2. Theory 4 1.2.2. Theory 4 1.2.2.1 Experimental status 4 1.2.2.2 Theory 4 1.2.2.3 Comparisons and conclusions 4	Rei	erences	to Chapter	VII
Appendix to Chapter VII: Tables VII-AT to VII-AT0 4 VIII. PHYSICS 4 1. Stability limits 4 1.1. INTOR design assumptions and parameters 4 (Phase Two A Part 1) 4 1.2. Data base 4 1.2.1. Beta limits 4 1.2.1.2. Theory 4 1.2.2. Density limits 4 1.2.2.1. Experimental status 4 1.2.2.1. Experimental status 4 1.2.2.1. Experimental status 4 1.2.2.2. Theory 4 1.2.2.3. Comparisons and conclusions 4 1.2.2.2. Theory 4 1.2.2.3. Comparisons and conclusions 4 1.2.2.4. Experimental status 4 1.2.2.3. Comparisons and conclusions 4	A		- Cleanter V	
VIII. PHYSICS 4 1. Stability limits 4 1.1. INTOR design assumptions and parameters 4 (Phase Two A Part 1) 4 1.2. Data base 4 1.2.1. Beta limits 4 1.2.1.2. Theory 4 1.2.1.3. Comparisons and conclusions 4 1.2.2.1 Experimental status 1.2.2.1 Experimental status 1.2.2.2 Theory 4.2.2.3 Comparisons and conclusions	App		o Chapter	vii: Tables vii-A1 to vii-A10
VIII. PHYSICS 4 1. Stability limits 4 1.1. INTOR design assumptions and parameters 4 (Phase Two A Part 1) 4 1.2. Data base 4 1.2.1. Beta limits 4 1.2.1.2. Theory 4 1.2.1.3. Comparisons and conclusions 4 1.2.2.1 Experimental status 1.2.2.1 Experimental status 4.2.2.2 Theory 4.2.2.3 Comparisons and conclusions				
1. Stability limits 4 1.1. INTOR design assumptions and parameters 4 1.1. INTOR design assumptions and parameters 4 1.2. Data base 4 1.2.1. Beta limits 4 1.2.1.1. Experimental status 4 1.2.1.2. Theory 4 1.2.1.3. Comparisons and conclusions 4 1.2.2.1 Experimental status 4 1.2.2.2. Theory 4 1.2.2.3. Comparisons and conclusions 4 1.2.2.2. Theory 4 1.2.2.3. Comparisons and conclusions 4 1.2.2.4. Experimental status 4 1.2.2.5. Theory 4 1.2.2.6. Theory 4 1.2.2.7. Theory 4 1.2.2.8. Comparisons and conclusions 4 1.2.2.9. Theory 4 1.2.2.1. Experimental status 4 1.2.2.2. Theory 4 1.2.2.3. Comparisons and conclusions 4	vit	Г РНУ	SICS	
1. Stability limits 4 1.1. INTOR design assumptions and parameters 4 1.1. INTOR design assumptions and parameters 4 1.2. Data base 4 1.2.1. Beta limits 4 1.2.1.1. Experimental status 4 1.2.1.2. Theory 4 1.2.1.3. Comparisons and conclusions 4 1.2.2.1 Experimental status 4 1.2.2.2. Theory 4 1.2.2.3. Comparisons and conclusions 4 1.2.2.2. Theory 4 1.2.2.3. Comparisons and conclusions 4 1.2.2.4. Experimental status 4 1.2.2.5. Theory 4 1.2.2.6. Theory 4 1.2.2.7. Theory 4 1.2.2.8. Comparisons and conclusions 4 1.2.2.9. Theory 4 1.2.2.1. Experimental status 4 1.2.2.2. Theory 4 1.2.2.3. Comparisons and conclusions 4			JICD	
1.1. INTOR design assumptions and parameters (Phase Two A Part 1) 4 1.2. Data base 4 1.2.1. Beta limits 4 1.2.1.1. Experimental status 4 1.2.1.2. Theory 4 1.2.1.3. Comparisons and conclusions 4 1.2.2.1.4. Experimental status 4 1.2.2.2. Theory 4 1.2.2.3. Comparisons and conclusions 4 1.2.2.2. Theory 4 1.2.2.3. Comparisons and conclusions 4 1.2.2.3. Comparisons and conclusions 4 1.2.2.4. Experimental status 4 1.2.2.2. Theory 4 1.2.2.3. Comparisons and conclusions 4 1.2.2.4. Experimental status 4 1.2.2.3. Comparisons and conclusions 4 1.2.2.4. Experimental status 4 1.2.2.5. Theory 4 1.2.2.4. Comparisons and conclusions 4 1.2.2.5. Theory 4 1.2.2.6. Theory 4 1.2.2.7. Theory 4 1.2.2.7. Theory 4 1.2.2.7. Theory 4 1.2.7.7. Theory 4 1.2.7.7	1.	Stabilı	ty limits	
(Phase Two A Part 1) 4 1.2. Data base 4 1.2.1. Beta limits 4 1.2.1.1. Experimental status 4 1.2.1.2. Theory 4 1.2.1.3. Comparisons and conclusions 4 1.2.2.1. Experimental status 4 1.2.2.1. Experimental status 4 1.2.2.1. Experimental status 4 1.2.2.1. Experimental status 4 1.2.2.2. Theory 4 1.2.2.3. Comparisons and conclusions 4		1.1.	INTOR d	esign assumptions and parameters
1.2. Data base 4 1.2.1. Beta limits 4 1.2.1.1. Experimental status 4 1.2.1.2. Theory 4 1.2.1.3. Comparisons and conclusions 4 1.2.2. Density limits 4 1.2.2.1. Experimental status 4 1.2.2.2. Theory 4 1.2.2.3. Comparisons and conclusions 4 1.2.2.2. Theory 4 1.2.2.3. Comparisons and conclusions 4 1.2.2.4. Experimental status 4 1.2.2.5. Theory 4 1.2.2.6. Theory 4			(Phase Tv	vo A Part 1)
1.2.1. Beta limits 4 1.2.1.1. Experimental status 4 1.2.1.2. Theory 4 1.2.1.3. Comparisons and conclusions 4 1.2.2. Density limits 4 1.2.2.1. Experimental status 4 1.2.2. Theory 4 1.2.2. Density limits 4 1.2.2.2. Theory 4 1.2.2.3. Comparisons and conclusions 4		1.2.	Data base	
1.2.1.1. Experimental status 4 1.2.1.2. Theory 4 1.2.1.3. Comparisons and conclusions 4 1.2.2. Density limits 4 1.2.2.1. Experimental status 4 1.2.2.2. Theory 4 1.2.2.3. Comparisons and conclusions 4 1.2.2.4. Experimental status 4 1.2.2.3. Comparisons and conclusions 4			1.2.1.	Beta limits
1.2.1.2.Theory41.2.1.3.Comparisons and conclusions41.2.2.Density limits41.2.2.1.Experimental status41.2.2.2.Theory41.2.2.3.Comparisons and conclusions4				1.2.1.1. Experimental status
1.2.1.3. Comparisons and conclusions 4 1.2.2. Density limits 4 1.2.2.1. Experimental status 4 1.2.2.2. Theory 4 1.2.2.3. Comparisons and conclusions 4				1.2.1.2. Theory
1.2.2. Density limits 4 1.2.2.1. Experimental status 4 1.2.2.2. Theory 4 1.2.2.3. Comparisons and conclusions 4				1.2.1.3. Comparisons and conclusions
1.2.2.1. Experimental status			1.2.2.	Density limits
1.2.2.2. Theory				1.2.2.1. Experimental status
1222 Comparisons and conclusions				1.2.2.2. Theory
				1223 Comparisons and conclusions

401		1.2.3.	Disruptio	ons	473
401			1.2.3.1.	Experimental status	473
401			1.2.3.2.	Theory	475
401			1.2.3.3.	Comparison and conclusions	479
405	1.	.3. R and D	programm	es	480
406		1.3.1.	Ongoing	programmes and expected advances	480
400		1.3.2.	Addition	al R and D needs	482
407	1	4. Impact of	n INTOR	design	482
407	2 C	onfinement			485
409	2. 0	1 Design a	ssumption	s and parameters (Phase Two A Part 1)	485
409	2	2 Data has	e		485
409	2	221	Energy c	onfinement	485
409		2.2.1.	2211	Experimental status	486
411			2.2.1.1.	Semi-empirical transport analysis	504
413			2.2.1.2.	Comparisons and discussions	505
413			2.2.1.3.	Conclusions of data base assessment	505
410			Dorticle	conclusions of data base assessment	507
413		2.2.2.		Europimentel statue	500
415			2.2.2.1.	Experimental status	510
415			2.2.2.2.	Status of theory	519
415		2.2.2	2.2.2.3.	Conclusions	519
415		2.2.3.	Moment	um confinement and plasma rotation	519
422			2.2.3.1.	Experimental status	519
422			2.2.3.2.	Theory	521
426			2.2.3.3.	Comparison and conclusions	522
426	2	.3. R and D	programm	e	522
428		2.3.1.	Ongoing	programmes and expected advances	522
429		2.3.2.	Addition	al R and D requirements	523
	2	.4. Impact c	on INTOR	design	523
430	3. N	leutral-beam he	eating and	current drive	524
	3	.1. INTOR	design assu	mptions and parameters	
431		(Phase T	wo A Part	1)	524
	3	.2. Data bas	e		524
		3.2.1.	Neutral-l	beam heating	524
453			3.2.1.1.	Experimental status	524
450			3.2.1.2.	Theory	526
453			3.2.1.3.	Comparison and conclusions	526
		3.2.2.	Neutral-I	beam current drive	527
453			3.2.2.1.	Experimental status	527
456			3.2.2.2.	Theory	527
456			3.2.2.3.	Comparison and conclusions	528
456	3	.3. R and D	programm	es	528
460	Ų	3.3.1.	Ongoing	programmes and expected advances	528
465		3 3 2	Addition	al R and D needs	528
467	3	4 Impact of	n INTOR	design	520
467	4 0	neration scena	rios	ачолын	529
472		I INTOR	design assu	mptions and parameters	547
472	-	(Phase T	wo A Part	1)	570
				1 <i>J</i>	547

	4.2.	Data base	e		530
		4.2.1.	Experim	ental results	530
		4.2.2.	Theory		531
		4.2.3.	Compari	son and conclusions	531
	4.3.	R and D	programm	le	532
		4.3.1.	Ongoing	programme and expected advances	532
		4.3.2.	Addition	al R and D needs	532
	4.4.	Impact o	n INTOR	design	532
5.	Burnir	ng plasma	•••••	-	533
	5.1.	INTOR d	lesign assu	mptions and parameters	
		(Phase T	wo A Part	1)	533
	5.2.	Data base	e	· · · · · · · · · · · · · · · · · · ·	533
		5.2.1.	Physics of	of burning plasmas	533
			5.2.1.1.	Experimental status	533
			5.2.1.2.	Theory	533
			5.2.1.3.	Comparison and conclusions	535
		5.2.2.	Burn ten	perature control methods	535
			5.2.2.1.	Experimental status	535
			5.2.2.2.	Theory	536
			5.2.2.3.	Comparison and conclusions	538
	5.3.	R and D	requireme	nts	538
		5.3.1.	Ongoing	programmes and expected advances	538
		5.3.2.	Addition	al R and D needs	539
	5.4.	Impact o	n INTOR	design	539
6.	Plasma	u diagnosti	cs	~	539
	6.1.	Introduc	tion		539
	6.2.	Data base	e	•••••••••••••••••••••••••••••••••••••••	540
		6.2.1.	Plasma p	arameters	540
			6.2.1.1.	Electromagnetic measurements	542
			6.2.1.2.	Electron density	542
			6.2.1.3.	Electron temperature	542
			6.2.1.4.	Ion temperature	542
			6.2.1.5.	Radiative losses	543
			6.2.1.6.	Impurity concentration	543
			6.2.1.7.	Runaway electrons	543
			6.2.1.8.	Hard-X-ray and neutron radiation	543
			6.2.1.9.	Concentration of helium ions	545
		6.2.2.	Discharge	e control	545
	6.3.	R and D	programm	es	545
		6.3.1.	Ongoing	programmes and expected advances	545
		6.3.2.	Addition	al R and D needs	545
			6.3.2.1.	Development of diagnostics applicable	
				in INTOR	545
			6.3.2.2.	Radiation hardness	546
			6.3.2.3.	RF noise shielding for diagnostic	
				instrumentation	548

		6.3.2.4. Tritium qualification of diagnostic			
		vacuum equipment	. 548		
		6.3.2.5. Diagnostics reliability	. 548		
		6.3.2.6. Penetration of the radiation shielding	. 549		
6.4.	Impact of	Impact on INTOR design			
	6.4.1.	Ports and penetrations in the shield	. 552		
	6.4.2.	Port allocations on INTOR	. 553		
	6.4.3.	Diagnostic instrumentation allocation	. 554		
	6.4.4.	Conclusions	. 554		
References	to Chapte	er VIII	. 554		

IX.	ENGI	NEERINC	G DATA BASE ASSESSMENT	557			
1.	Introd	uction		557			
2.	System	Systems engineering					
	2.1.	Summar	ry of INTOR requirements	558			
		2.1.1.	Overall optimization codes	558			
		2.1.2.	Subsystem codes	558			
		2.1.3.	Cost data base	558			
		2.1.4.	Computer-aided design systems	559			
	2.2.	Analytic	cal tools	559			
		2.2.1.	Data base	559			
		2.2.2.	R and D requirements	565			
		2.2.3.	Impact on INTOR design	565			
	2.3.	Systems	cost data base	565			
		2.3.1.	Data base	565			
		2.3.2.	R and D requirements	569			
		2.3.3.	Impact on INTOR design	569			
	2.4.	Design t	ools (computer-aided design and computer graphic				
		systems))	569			
		2.4.1.	Data base	569			
		2.4.2.	R and D requirements	570			
		2.4.3.	Impact on INTOR design	570			
3.	Magne	ts	-	570			
	3.1.	Summar	ry of magnet system design requirements	570			
	3.2.	Structur	res	573			
		3.2.1.	Mechanical characteristics	573			
		3.2.2.	Radiation effects	575			
		3.2.3.	Quality control techniques	576			
		3.2.4.	Impact on INTOR design	576			

	3.3.	Conduct	ors	576
		3.3.1.	Critical current characteristics	576
		3.3.2.	Stability characteristics	577
		3.3.3.	Heat transfer characteristics	579
		3.3.4.	Analytical tools	580
		3.3.5.	Manufacturing technology	582
		3.3.6.	Radiation effects	583
		3.3.7.	Impact on INTOR design – conductors	584
	3.4.	Insulatio	on	584
		3.4.1.	Data base assessment	584
		3.4.2.	R and D requirements	586
		3.4.3.	Impact on INTOR design	586
	3.5.	Refrigera	ation	586
		3.5.1.	Data base assessment – cryogenic components	586
		3.5.2.	R and D requirements – cryogenic components	587
		3.5.3.	Impact on design – cryogenic components	587
		3.5.4.	Data base assessment – analytical tools	587
		3.5.5.	R and D programmes – analytical tools	589
		3.5.6.	Impact on INTOR design – analytical tools	589
	3.6.	Demonst	tration coil projects	589
		3.6.1.	Data base assessment – poloidal field coils	589
		3.6.2.	R and D projects – poloidal field coils	589
		3.6.3.	Impact – poloidal field coils	590
		3.6.4.	Data base assessment – toroidal field coils	590
		3.6.5.	R and D requirements – toroidal field coils	590
		3.6.6.	Impact – toroidal field coils	591
4.	Vacuu	m enclosu	re and vacuum technology	591
	4.1.	Summar	y of INTOR Phase Two A design requirements	591
		4.1.1.	Vacuum enclosure requirements	591
		4.1.2.	Vacuum technology requirements	592
	4.2.	Vacuum	enclosure	593
		4.2.1.	Data base	593
		4.2.2.	R and D programmes	594
		4.2.3.	Impact on INTOR reference design	594
	4.3.	Vacuum	technology	594
	4.4.	R and D	programmes	595
5.	Heatin	g system ((NBI)	596
	5.1.	Positive-i	ion-based NBI	596
		5.1.1.	INTOR requirements	596
		5.1.2.	Data base assessment	596
		5.1.3.	R and D programmes	597
		5.1.4.	Impact on INTOR design	598

	5.2.	Negative	-ion-based NBI	598
		5.2.1.	INTOR requirements	598
		5.2.2.	Data base assessment	599
		5.2.3.	R and D programme	599
		5.2.4.	Impact on INTOR design	600
6.	Pellet	injection		600
	6.1.	INTOR r	equirement	600
		6.1.1.	Pellet composition	601
		6.1.2.	Pellet velocity	601
	6.2.	Data bas	e assessment	601
	6.3.	Impact o	n INTOR design	602
7.	Radiat	tion-harde	ned diagnostics and instrumentation	603
	7.1.	INTOR r	equirements	603
	7.2.	Data base	e assessment	603
	7.3.	R and D	programmes	603
	7.4.	Impact o	n INTOR design	606
Refe	erences	to Chapter	r IX	606

9			`			
9	Х.	NUCLI	EAR	••••••		609
9	1.	Blanke	t data bas	e assessme	nt	609
0		11	Summar	of INTO	P design requirements	600
0		1.1.	Julillar			009
0			1.1.1.	Blanket	lesign options	609
1			1.1.2.	Blanket o	lesign parameters	610
1		1.2.	Blanket	issues		610
1			1.2.1.	Neutroni	cs and tritium breeding	610
1				1.2.1.1.	General remarks	610
2				1.2.1.2.	Tritium breeding requirements	611
3				1.2.1.3.	Nuclear data availability	611
3				1.2.1.4.	Current status of nuclear data	612
4				1.2.1.5.	Neutronics methods and codes	614
4			1.2.2.	Solid bre	eder blankets	615
4				1.2.2.1.	Material data	615
5				1.2.2.2.	Fabrication data	618
6				1.2.2.3.	Tritium recovery	620
6				1.2.2.4.	Neutron multipliers – Be, Pb	625
6				1.2.2.5.	Tritium release and recovery models	626
6			1.2.3.	Liquid bi	reeder blankets	629
7				1.2.3.1.	Materials data	629
8				1.2.3.2.	Data on liquid-metal corrosion	629

1.2.3.3. Data on MHD effects in liquid metals 635

		1.2.3.4.	Tritium solubility and recovery from		3.	Tritiu	m system	data asses
			lithium and LiPb	. 636		3.1.	Summar	y of INT
		1.2.3.5.	Models and codes	. 637			3.1.1.	Major s
	1.2.4.	Test mod	lule instrumentation requirements	638			3.1.2.	Design
		1.2.4.1.	Dosimetry	638		3.2.	Data bas	se assessm
		1.2.4.2.	Thermal hydraulics and				3.2.1.	Tritium
			thermomechanics	641			3.2.2.	Tritiun
	1.2.5.	Ceramic	insulators	643			3.2.3.	Tritiun
		1.2.5.1.	Base properties of ceramics	643			3.2.4.	Tritiun
		1.2.5.2.	Radiation effects on properties of				3.2.5.	Models
			ceramics	644		3.3.	R and D	program
		1.2.5.3.	Fabrication of ceramic components	646			3.3.1.	Ongoir
1.3	. R and D) programm	es	647			3.3.2.	Requir
	1.3.1.	Neutroni	cs R and D programmes	647			3.3.3.	Impact
		1.3.1.1.	Ongoing programmes	647				referen
		1.3.1.2.	Test facilities – integral experiments	0.11			3.3.4.	Impact
			for blankets and cross-section		4.	Safely	v and envir	conmenta
			measurements	650		4.1.	Summar	v of INT
		1.3.1.3.	Required R and D programmes	651			4.1.1.	Dose li
	1.3.2.	Solid bre	eder programmes	653			4.1.2.	Doses i
		1.3.2.1.	Ongoing programmes	653			4.1.3.	Limits
		1.3.2.2.	Test facilities	655		4.2.	Safety a	nd enviro
		1.3.2.3.	Required new programmes	655			4.2.1.	Safety-
	1.3.3.	Liquid bi	reeder programmes	655				4.2.1.1
		1.3.3.1.	Ongoing programmes	655				
		1.3.3.2.	Test facilities	657				4.2.1.2
		1.3.3.3.	Required new programmes	658				
1.4	. Impact o	of new blan	ket data on INTOR reference design	659				4213
Shi	eld data base	assessment		659				4214
2.1	. Summar	v on INTO	R Phase Two A design requirements	659				4 2 1 5
	2.1.1.	Design or	ations	659				4216
	2.1.2.	Design of	als	660				4217
2.2	Data bas	se assessmer	nt	660			422	Radioa
	221	Protectio	n criteria	660			1.2.2.	4 2 2 1
	2.2.2	Shielding	and radioactivity cross sections	662				7.2.2.1
2.3	Current	R and D nr	ogrammes and test facilities	002 665				4222
2101	231	Cross-sect	tions for transport calculations	666				7.2.2.2
	2.3.1.	Activatio	n data	669				
	2.3.2.	Integral	hielding experients	008			122	Padio
	2.3.3. 7 2 A	Paquine d		009			4.2.3. 1 2 1	Dedica
Э <i>А</i>	L.J.H.	nequired	d data/regulta or INTOD Court	6/4		12	4.2.4. D cm 4 F	Rauioa
2.4.	design	JI HOW SHIEL	u uata/results on INTOK reference			4.3.		, program
	uesign	•••••		676			4.3.1.	Ungoir

Tritiur	n system d	lata assessn	nent	677
3.1.	Summary	of INTOP	R Phase Two A design requirements	677
	3.1.1.	Major sub	osystems	677
	3.1.2.	Design pa	rameters	678
3.2.	Data base	e assessmer	nt	678
	3.2.1.	Tritium p	properties	678
	3.2.2.	Tritium p	ermeation into the coolant	680
	3.2.3.	Tritium-p	processing techniques	682
	3.2.4.	Tritium t	ransportation	685
	3.2.5.	Models an	nd codes	686
3.3.	R and D	programm	es	687
	3.3.1.	Ongoing	programmes and test facilities	687
	3.3.2.	Required	new programmes	689
	3.3.3.	Impact of	f new tritium data/results on INTOR	
		reference	design	689
	3.3.4.	Impact of	f change in the breeding ratio	689
Safely	and enviro	onmental d	ata base assessment	690
4.1.	Summary	y of INTO	R Phase Two A design requirements	690
	4.1.1.	Dose limi	its	690
	4.1.2.	Doses in	normal operation	690
	4.1.3.	Limits fo	r accidental releases of radioactivity	690
4.2.	Safety ar	nd environi	nental data base	691
	4.2.1.	Safety-re	lated criteria	691
		4.2.1.1.	Allowable tritium release to the	
			environment	691
		4.2.1.2.	Maximum tritium release in accident	
			conditions	691
		4.2.1.3.	Radioactive products	691
		4.2.1.4.	Magnetic fields	692
		4.2.1.5.	Radiofrequency radiation	692
		4.2.1.6.	Abnormal events	692
		4.2.1.7.	Criteria for waste disposal	692
	4.2.2.	Radioact	ive source term	693
		4.2.2.1.	Tritium inventory, tritium storage,	
			tritium permeation	693
		4.2.2.2.	Coolant leakage level and maximum	
			allowable tritium concentration in the	
			coolant	693
	4.2.3.	Radioact	ive products in air and coolant	693
	4.2.4.	Radioact	ive waste considerations	693
4.3.	R and D	programm	es	694
	4.3.1.	Ongoing	programmes	694
		4.3.1.1.	USA	694

			4.3.1.2. Japan	695	4.2.
			4.3.1.3. Europe	695	
			4.3.1.4. USSR	696	
		4.3.2.	Test facilities	696	4.3.
		4.3.3.	Required new programmes	696	4.4.
Ref	erences	to Chapt	er X	697	4.5. 4.6. 4.7
XI.	INTO	R CONCI	EPT EVOLUTION	699	5. Assemb
1.	Role	of INTOR	in the fusion programme	700	5.1.
2.	INTO	R objectiv	ves	701	5.2.
3.	INTO	R concep	t evolution	702	
Ref	erences	to Chapte	er XI	712	
XII	DESI	GN CONC	EPT	713	
0.	Introd	luction		713	
1.	Design	1 specifica	itions	714	
2.	Physic	s basis		714	
	2.1.	Beta		714	
	2.2.	Density	limit	719	5.3.
	2.3.	Disrupti	ons	719	
	2.4.	Confine	ment data base	727	6. RF hea
	2.5.	Burning	-plasma considerations	727	6.1.
	2.6.	Plasma o	liagnostics	729	6.2.
3.	Trade	studies		729	
	3.1.	Reducti	on in device size	731	6.3.
		3.1.1.	Inboard shield thickness	731	7. Operati
		3.1.2.	TF coil current density	731	7.1.
		3.1.3.	Inboard scrape-off region	732	7.2.
		3.1.4.	OH solenoid design	733	
		3.1.5.	Radial build	733	
	3.2.	Startup	capability	734	
	3.3.	OH swin	g and plasma heating time	735	
		3.3.1.	OH swing time	735	8. Vertica
		3.3.2.	Plasma heating time	735	9. Magnet
	3.4.	Safety fa	actor	736	9.1.
	3.5.	Variatio	ns of beta	739	9.2.
4.	Config	uration		739	9.3.
	4.1.	Introduc	tion	739	9.4.
		4.1.1.	Objectives	739	9.5.
		4.1.2.	Design requirements	740	9.6.
			- •		

•••••	695		4.2.	TF coil desig	n	742
•••••	695			4.2.1. Ri	pple requirement	742
•••••	696			4.2.2. TI	F coil thickness	744
	696		4.3.	PF system		745
•••••	696		4.4.	Vacuum bou	ndary	746
			4.5.	Torus system	1	746
•••••	697		4.6.	Radial build		747
			4.7.	Impurity con	ntrol	747
•••••	699	5.	Assen	bly and main	enance	747
			5.1.	Introduction	1	747
•••••	700		5.2.	Assembly ar	d maintenance approach	748
•••••	701			5.2.1. T	proidal magnetic field coil design – access	
•••••	702			re	quirements	748
				5.2.2. Po	bloidal magnetic field coil system	749
•••••	712			5.2.3. V	ertical stabilization coils	750
				5.2.4. C	ombined cryogenic and torus vacuum chamber	
•••••	713			tc	pology	751
	713			5.2.5. T	orus modularization and segmentation	753
••••••	714			5.2.5. In	nurity control	753
••••••	714			5.2.0. II	ructural support system	755
••••••	714			5.2.7. B	seembly	756
•••••	714		53	Alternative	assembly and maintenance annroach	756
•••••	719		5.5.		ssembly and vertical access	759
•••••	719	6	PF he	ating and cur	ent drive	761
•••••	727	0.	61	Ion cyclotro	in heating system	761
•••••	727		6.7	I ower hybr	d current ramp-un/transformer recharge	,01
•••••	729		0.2.	system	a current ramp appraation net reenarge	762
•••••	729		63	Electron cu	latron startun system	763
•••••	/31	7	0.5.	ting scongrigs	notion startup system	764
•••••	/31	7.	Opera	Industive or	antina soonario	766
•••••	731		7.1.	Inductive of	seraring scenario	760
•••••	732		1.2.	Operating so	enario including RF current drive	760
•••••	733			7.2.1. Pl	system considerations of non-inductive operation	/00
•••••	733			/.2.2. E	ngineering considerations associated with	
•••••	734			ne	on-inductive current ramp-up and transformer	760
•••••	735	0	.	re		/09
•••••	735	8.	Verti	al position sta	bilization	771
•••••	735	9.	Magn	ets		//5
•••••	736		9.1.	Introduction	1	775
•••••	739		9.2.	Toroidal fie	ld coil system	776
•••••	739		9.3.	Poloidal fiel	d coil system	779
	739		9.4.	Active verti	cal position control coil system	779
•••••	739		9.5.	TF coil pow	er conversion and protection	780
•••••	740		9.6.	PF coil pow	er conversion and protection	781
			9.7.	Cryostat and	1 cryogenic system	782

10.	Impurity control	783
	10.1. Collector plate studies	783
	10.2. Reduced-channel-length divertor	789
11.	First wall	790
12.	Tritium-producing blanket	792
13.	Tritium and vacuum	794
	13.1. Tritium system	794
	13.2. Vacuum system	795
14.	Radiation shield	796
	14.1. Toroidal field coil protection	797
	14.2. Shield thickness and composition	798
	14.3. Conclusions	801
15.	Facilities	802
	15.1. Site criteria	802
	15.2. Facility layout	802
16.	Cost evaluation	807
	16.1. Direct capital costs	807
	16.2. Indirect capital costs	809
	16.3. Operation costs	809
	-	
References to Chapter XII		

XIII	811				
1.	Role o	811			
2.	Operat	ional requirements	812		
	2.1.	Fluence requirements for structural materials radiation			
		damage tests	813		
	2.2.	Blanket testing requirements	814		
	2.3.	Long-term operation component reliability	818		
3.	Operat	peration schedule			
4.	Test p	rogramme	819		
	4.1.	Plasma operation in Stage I and plasma experiments	820		
	4.2.	Plasma engineering tests	820		
	4.3.	Blanket engineering tests	820		
	4.4.	Materials testing: bulk properties	821		
	4.5.	Materials testing: surface effects	821		
	4.6.	Surveillance tests	822		
	4.7.	Nuclear tests	822		
	4.8.	Electricity generation	822		
Refe	erences	to Chapter XIII	823		

XIV	/. ADMINISTRATIVE APPENDICES	825
1.	INTOR Phase Two A Part 2 Workshop Sessions	825
2.	European INTOR home-base organization	825
	2.1. Euratom INTOR Workshop Team	825
	Workshop participants and attendees	825
	INTOR/NET Steering Group	825
	Contributors to individual chapters	826
	Organizational index	829
	Publications during Phase Two A Part 2	830 -
3.	Japan INTOR Workshop Team	831
	Workshop participants and attendees	831
	Contributors to individual chapters	831
	Organizational index	836
4.	USA INTOR Workshop Team	836
	Workshop participants and attendees	836
	Contributors to individual chapters	836
	Organizational index	842
5.	USSR INTOR Workshop Team	843
	Workshop participants and attendees	843
	Contributors to individual chapters	843
	Organizational index	849