Contents

Chapter 1	Ma	xwell's Theory
	1	Introduction: Definition of the Fields 1
	2	Maxwell's Equations 2
	3	Solution of the Equations in Free Space 3
	4	Applications to the Skin Effect and Metallic
		Reflection 6
	5	Energy and Momentum of an Electromagnetic Field 9
	6	Radiation from a Charge and Current
		Distribution 16
	7	Solution of Maxwell's Equations in Terms of
		Retarded Potentials 27
	8	Classification of Multipole Radiation 37
	9	Energy of a Nearly Static Distribution of Charge 45
	10	Lienard-Wiechert Point Potential 49
	11	Field of a Uniformly Moving Point Charge 52
	12	Field of an Accelerated Point Charge 59
	13	Rate of Radiation of Energy from an Accelerated
		Point Charge 63
	14	Application to a Simple Theory of
		Bremsstrahlung 67
	15	Radiation Reaction 75
	16	Self-energy of the Electron 85
	17	Classical Theory of Scattering and Dispersion 89
	18	Hamiltonian Theory for the Motion of a Charged
		Particle in an Electromagnetic Field 100
Chapter 2	Special Theory of Relativity	
	19	Transformation of Newton's Equations 105
	20	Michelson-Morley and Kennedy-Thorndyke
		Experiments 108
	21	Lorentz Transformation 111

X CONTENTS

- 22 Minkowski Diagram 118
- Derivation of the Fresnel Coefficient and the Aberration Formula 121
- 24 Covariance 122
- 25 Transformation Laws of the Electromagnetic Quantities 127
- 26 Application to the Method of Virtual Quanta 133
- 27 Application to the Theory of the Čerenkov Effect 139
- 28 Transformation of Energy and Momentum 143
- 29 Inertia and Energy 154
- 30 Considerations Important for the Quantum Theory 155