CONTENTS

1. Introduction

- 1.1 Fundamental approaches to the problem
- 1.2 Planetary system—satellite systems
- 1.3 Five stages in the evolution
- 1.4 Processes governing the evolutionary stages
- 1.5 Model requirements and limitations

PART A PRESENT STATE AND BASIC LAWS

2. The Present Structure of the Planetary and Satellite Systems

- 2.1 Orbital properties of planets and satellites
- 2.2 Physical properties of planets and satellites
- 2.3 Prograde and retrograde satellites
- 2.4 The Laplacian model and the distributed-density function
- 2.5 Discussion of the distributed-density diagrams
- 2.6 Titius-Bode's "law"

3. The Motion of Planets and Satellites

- 3.1 The guiding-center approximation of celestial mechanics
- 3.2 Circular orbits
- 3.3 Oscillations modifying the circular orbit
- 3.4 Motion in an inverse-square-law gravitational field
- 3.5 Nonharmonic oscillation; large eccentricity
- 3.6 Motion in the field of a rotating central body
- 3.7 Planetary motion perturbed by other planets

HANNES ALFVÉN AND GUSTAF ARRHENIUS

4. The Small Bodies

- 4.1 Survey and classification
- 4.2 Evolutionary differences between large and small bodies
- 4.3 Main-belt asteroids
- 4.4 The Hilda and Hungaria asteroids
- 4.5 The Trojans
- 4.6 The cometary-meteoroid populations

5. Forces Acting on Small Bodies

- 5.1 Introduction
- 5.2 Gravitational effects
- 5.3 Electromagnetic effects
- 5.4 Limit between electromagnetically and gravitationally controlled motion
- 5.5 Radiation effects
- 5.6 Conclusions

6. Kepler Motion of Interacting Bodies: Jet Streams

- 6.1 Introduction
- 6.2 The interplanetary medium
- 6.3 Effects of collisions
- 6.4 Orbiting particles confined in a spacecraft
- 6.5 Conclusions from the spacecraft model
- 6.6 Iet streams and negative diffusion
- 6.7 Simple model of negative diffusion
- 6.8 Contraction time of a jet stream
- 6.9 Collisions between a grain and a jet stream
- 6.10 Jet streams as celestial objects

7. Collisions: Fragmentation and Accretion

- 7.1 Production of small bodies: fragmentation and accretion
- 7.2 Size spectra
- 7.3 Three simple models
- 7.4 The transition from fragmentation to accretion

8. Resonance Structure in the Solar System

- 8.1 Resonances in the solar system
- 8.2 Resonance and the oscillation of a pendulum
- 8.3 A simple resonance model
- 8.4 Deviations from exact resonance
- 8.5 Orbit-orbit resonances

EVOLUTION OF THE SOLAR SYSTEM

- 8.6 The Kirkwood gaps
- 8.7 On the absence of resonance effects in the Saturnian ring system
- 8.8 Spin-orbit resonances
- 8.9 Near-commensurabilities

9. Spin and Tides

- 9.1 Tides
- 9.2 Amplitude of tides
- 9.3 Tidal braking of a central body's spin
- 9.4 Satellite tidal braking of planetary spins
- 9.5 Solar tidal braking of planetary spins
- 9.6 Tidal evolution of satellite orbits
- 9.7 Isochronism of spins
- 9.8 Conclusions from the isochronism of spins

10. Post-Accretional Changes in the Solar System

- 10.1 Stability of orbits
- 10.2 Resonance and stability
- 10.3 Stability of Saturnian rings and the asteroidal belt
- 10.4 Constancy of spin
- 10.5 On the possibility of reconstructing the hetegonic processes

PART B THE ACCRETION OF CELESTIAL BODIES

11. Accretional Processes

- 11.1 Survey of Part B
- 11.2 Gravitational collapse of a gas cloud
- 11.3 Planetesimal accretion: accretion by capture of grains or gas
- 11.4 Gravitational accretion
- 11.5 Nongravitational accretion
- 11.6 Accretion of resonance-captured grains
- 11.7 Necessary properties of an accretional process
- 11.8 The present state of asteroids, meteoroids and comets, and the exploded-planet hypothesis

12. On the Accretion of Planets and Satellites

- 12.1 Planetesimal accretion
- 12.2 A jet stream as an intermediate step in formation of planets and satellites

HANNES ALFVÉN AND GUSTAF ARRHENIUS

- 12.3 Accretion of an embryo
- 12.4 Mass balance of the jet stream
- 12.5 Energy balance in a jet stream
- 12.6 Accretion when the infall into the jet stream is constant
- 12.7 Discussion
- 12.8 Numerical values
- 12.9 Conclusions about the different types of accretion
- 12.10 Early temperature profile of accreted body
- 12.11 Conclusions about the temperature profile of planets
- 12.12 The accretional hot-spot front
- 12.13 Differentiation effect of the accretional heat front

13. Spin and Accretion

- 13.1 Grain impact and spin
- 13.2 Accretion from circular orbits by nongravitating embryo
- 13.3 Gravitational accretion
- 13.4 Giuli's theory of accretion
- 13.5 Statistical theory of accretion
- 13.6 Jet-stream accretion and planetary spins

14. Relations Between Comets and Meteoroids

- 14.1 Basic problems
- 14.2 Positive and negative diffusion; meteor streams as jet streams
- 14.3 Accretional mechanism in meteor streams
- 14.4 Observations of comet formation in a meteor stream
- 14.5 Long- and short-period comets
- 14.6 Inferences on the nature of comets from emission characteristics
- 14.7 Analogies between cometary and asteroidal streams
- 14.8 Comparison with the accretion of planets and satellites

PART C PLASMA AND CONDENSATION

15. Plasma Physics and Hetegony

- 15.1 Summary of parts A and B and plan for parts C and D
- 15.2 Relation between experimental and theoretical plasma physics
- 15.3 The first and second approach to cosmic plasma physics
- 15.4 Strategy of analysis of hetegonic plasmas
- 15.5 Required properties of a model
- 15.6 Some existing theories

EVOLUTION OF THE SOLAR SYSTEM

16. Model of the Hetegonic Plasma

- 16.1 Magnetized central body
- 16.2 Angular momentum
- 16.3 The transfer of angular momentum
- 16.4 Support of the primordial cloud
- 16.5 The plasma as a transient state
- 16.6 Conclusions about the model
- 16.7 The hetegonic nebulae
- 16.8 Irradiation effects
- 16.9 The model and the hetegonic principle

17. Transfer of Angular Momentum and Condensation of Grains

- 17.1 Ferraro isorotation and partial corotation
- 17.2 Partial corotation of a plasma in magnetic and gravitational fields
- 17.3 A plasma in partial corotation
- 17.4 Discussion
- 17.5 Condensation of the plasma: the two-thirds law
- 17.6 Energy release during angular momentum transfer

18. Accretion of the Condensation Products

- 18.1 Survey
- 18.2 Evolution of orbits due to collisions
- 18.3 The Roche limit
- 18.4 Model of orbit development
- 18.5 Accretion inside r_{MR}
- 18.6 Structure of the Saturnian rings
- 18.7 Accretion outside r_{MR}
- 18.8 Formation of the asteroid belt
- 18.9 Conclusions about partial corotation
- 18.10 Satellite and planet formation
- 18.11 Accretion of volatile substances

19. Transplanetary Condensation

- 19.1 Interplanetary and transplanetary condensation
- 19.2 Limit between interplanetary and transplanetary space
- 19.3 Condensation of bodies in almost-parabolic orbits
- 19.4 Bodies with long-period orbits
- 19.5 Diffusion of almost-parabolic orbits: encounters with planets
- 19.6 Genetic relations of the comet-meteoroid complex
- 19.7 Conclusions about the meteoroid populations
- 19.8 Genealogy of the bodies in the solar system

PART D PHYSICAL AND CHEMICAL STRUCTURE OF THE SOLAR SYSTEM

20. Chemical Structure of the Solar System

- 20.1 Survey
- 20.2 Sources of information about chemical composition
- 20.3 Chemical differentiation before and after the accretion of bodies in the solar system
- 20.4 Unknown states of matter
- 20.5 The composition of planets and satellites
- 20.6 Composition of the Sun
- 20.7 Regularity of bulk densities in the solar system

21. Mass Distribution and the Critical Velocity

- 21.1 Mass distribution in the solar system
- 21.2 The bands of secondary bodies as a function of gravitational potential energy
- 21.3 Comparative study of the groups of secondary bodies
- 21.4 Theoretical background for the band formation
- 21.5 Attempts to interpret the band structure
- 21.6 Three objections
- 21.7 Search for a "critical velocity"
- 21.8 Experiments on the critical velocity
- 21.9 Theory of the critical velocity
- 21.10 Conclusions about the critical velocity
- 21.11 Chemical composition of infalling gas
- 21.12 The chemical composition of the solar system and inhomogeneous plasma emplacement
- 21.13 Modification of the critical velocity ionization distance due to interaction with a partially corotating plasma

22. Meteorites and Their Precursor States

- 22.1 Interpretation of the evolutionary record in meteorites
- 22.2 Sources of meteorites
- 22.3 Selection effects
- 22.4 Upper size limits of meteorite precursor bodies
- 22.5 Precursor states of meteorite parent bodies
- 22.6 Jet-stream evolution and properties of meteorites
- 22.7 Cohesive forces in meteoritic material
- 22.8 Evolutionary sequence of precursor states of meteorites

EVOLUTION OF THE SOLAR SYSTEM

- 22.9 Age relationships in the evolution of meteorite parent jet
- 22.10 General remarks on the record in meteorites
- 23. The Structure of the Groups of Secondary Bodies
 - 23.1 Ionization during the emplacement of plasma
 - 23.2 Complete ionization
 - 23.3 Partial ionization
 - 23.4 Change of spin during the formation of secondary bodies
 - 23.5 Observational values of T_K/τ
 - 23.6 Mass distribution as a function of T_{ion}/τ
 - 23.7 Discussion of the structure of the groups of secondary bodies
 - 23.8 Complete list of T_{ion}/τ for all bodies
 - 23.9 Completeness
 - 23.10 Conclusions about the model of plasma emplacement

PART E SPECIAL PROBLEMS

- 24. Origin and Evolution of the Earth-Moon System
 - 24.1 The hetegonic aspect
 - 24.2 Comparison with other satellite systems
 - 24.3 Structure of a normal satellite system of the Earth
 - 24.4 The capture theory
 - 24.5 Tidal evolution of the lunar orbit
 - 24.6 Destruction of a normal satellite system
 - 24.7 Accretion and the heat structure of the Moon
 - 24.8 Composition of the Moon
 - 24.9 Conclusions
- 25. The Properties of the Early Sun
 - 25.1 On the use of solar-system data to study the early Sun
 - 25.2 Solar mass
 - 25.3 Solar magnetic field
 - 25.4 Solar spin period
 - 25.5 Solar radiation, solar wind
 - 25.6 Effects produced by a D-burning Sun
 - 25.7 Remarks on the formation of stars

HANNES ALFVÉN AND GUSTAF ARRHENIUS

26. Origin of the Earth's Ocean and Atmosphere

- 26.1 Earth's ocean and the formation of the solar system
- 26.2 The remote precursor stages
- 26.3 The immediate precursor stages
- 26.4 Accumulation of water during the accretion of the Earth
- 26.5 Introduction of water in the lithosphere
- 26.6 The ocean and the Earth-Moon system
- 26.7 Summary and conclusions

27. Concluding Remarks

References

Symbols

Index

