CONTENTS

Laser Fusion Experiments at 2TW	
H. G. AHLSTROM	I
Exploding Pusher Experiments Utilizing a 4π Illumination System H. G. AHLSTROM	17
	17
Thermonuclear Fusion Plasma by Lasers Coupling and Implosion C. YAMANAKA	32
Electron-Flux Limitation Due to Ion Acoustic Instability	
Weibel Instability Induced by Electron Thermal Flux	
Stability of Decelerating Shock Wave Keishiro NIU	51
An Elementary Analysis of Fusion Implosions R. K. OSBORN	60
Facilities of High Power Lasers in Osaka University T. YAMANAKA	. 71
Hoya New Glasses for High-Power Laser System's Tetsuro IZUMITANI	. 80
Design and Operation of Large CO ₂ Laser Systems for Fusion Applications Keith BOYER	. 86
Development of High Power Iodine Laser at U. B. C. S. ARIGA	107
Laser Plasma Interactions at 10.6 µm Wavelengths Keith BOYER	. 108
Basic Requirement of Laser Fusion Power Production and Laser Fusion-Fission Plutonium Breeding	
Ray E. KIDDER	118
Laser Driven Compression and Neutron Generation with Spherical Shell Targets Roy. R. JOHNSON	. 150
Experimental Studies of the Physics of Laser Fusion Barrett H. RIPPIN	153
Thermonuclear Reaction Wave in High-Density Plasma K. NISHIHARA	. 172
Effect of a Nonlinear Refractive Index on Faraday Rotation R. K. OSBORN	. 207

Experimental and Theoretical Investigations of Laser Solenoid Fusion George VLASES	192
High Temperature High Quality Deuterium Plasma Production by Laser Beams and Interactions with Magnetic Field Tadashi SEKIGUCHI	193
Preliminary Baseline Design Automatic Alignment System for the Omega Ten Laser System M. LUBIN	211
Theory and Interpretation of Laser Compression Studies at the University of Rochester E. B. GOLDMAN	229
Experimental Investigation of Chemical Reactions of Laser Excited Uranium Atoms T. MOCHIZUKI	245
A New Technique of Measurement of Ultra-Short Relaxation Time in Excited Media by Means of Nonlinear Optical Process Tatsuo YAJIMA	255
Experimental Simulation of Parametric Instabilities in Laser-Plasma Interactions N. C. LUHMANN, Jr	262
Computer Modeling of Glass Fusion Laser Alex GLASS	263
Particle Beam Fusion Research J. R. FREEMAN	270
Tayleigh-Taylor Instabilities in Inertial-Confinement Fusion Targets J. R. FREEMAN	278
Kinetic Energy of Laser Accelerated Charged Particles in a Plasma and the Possibility of Pair Production Helmut SCHWARZ	302
Ion Generation by Laser and its Application to Metal Vapor Laser Koichi TOYODA	321
Closing Remarks C. YAMANAKA	324