総 目 次

まえがき(内容紹介)

序	Ē	i								会	長	石	野	俊	夫	
第	1 章	概	説													
	§ 1.1	. 溶融塩	豆とは(可か?・								••••			•••••	3
	§ 1.2	? 溶融塩	夏の工業	美的特色	色			• • • • • •		•••••		•••••			•••••	6
第:	2 章	溶融	塩の諸	备物性												
	§ 2.1	. 液体精	捧造(氢	ミ験解 相	折)…										•••••	11
	§ 2.2	液体棒	黄造(:	ンミュー	レーシ	′ョン)	• • • • • •		•••••			•••••	• • • • • • • • • • • • • • • • • • • •	••••	12
	§ 2.3	状態 図	d			• • • • • •	• • • • • • • • • • • • • • • • • • • •								•••••	13
	§ 2.4	密度	ŧ			• • • • • • •						•••••			•••••	14
	§ 2.5	熱容量	量・融角	4熱・池	昆合熱	ţ							•••••	•••••	••••	16
	§ 2.6	蒸気圧	三・熱分	}解 …		•••••	•••••	•••••	•••••						•••••	17
	§ 2.7	′ 溶融塩	ヹおよて	ド 溶融質	骏化物	」(ス	ラグ)) の	表面的	長力…				• • • • • • • • • • • • • • • • • • • •	••••	19
	§ 2.8	3 粘 度	ŧ			• • • • • • •									•••••	19
	§ 2.9	熱伝導	事率・熱	ぬ拡散≥	率	• • • • • • • • • • • • • • • • • • • •				•••••				• • • • • • •	••••	21
	§ 2.1	0 電気	伝導度						•••••	•••••			•••••	• • • • • • • • • • • • • • • • • • • •	•••••	22
;	§ 2.1	1 自己	拡散·		•••••	• • • • • • • •		•••••		•••••			•••••	• • • • • • •	•••••	24
į	§ 2.1	2 相互	拡散·							• • • • • • •			•••••	• • • • • • •	•••••	26
	§ 2.1	3 熱物	性デー	ターの	検索			•••••		•••••				• • • • • • •		27
•	§ 2.1	4 潜熱	・熱容	量およ	び密度	度の推	推定法	÷		•••••				• • • • • • •		30
+	§ 2.1	5 熱輸	送係数	推算・				•••••		•••••				• • • • • • •		31
•	§ 2.1	6 物性	データ	ーに関	する間	問題点	į	•••••	•••••	•••••		•••••	•••••	•••••		33
第3	3 章	装置机	才料と	の共	存性											
•	§ 3.1	溶融塩	፤におり	ける腐食	食とそ	のモ	ニタ!	リン:	グ…	•••••	•••••	•••••		•••••		37
į	§ 3.2	フッ化	2物浴中	中での電	電気化	学的	挙動·			•••••		• • • • • •		• • • • • •		38

	§	3.3	フッ化物浴中での Hastelloy N の挙動4
	8	3.4	水酸化物浴中での金属の挙動 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
第	4	章	溶融塩用機器および測定器
			熱媒体装置の運転法と機器・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
	§	4.2	流量計, 温度計, 圧力計4
			ポンプと輸送動力
			金属熱処理用機器・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
	§	4.5	物性測定用機器 · · · · · · · · · · · · · · · · · · ·
	§	4.6	補遺:配管子熱、バルブ、熱交換器、計測器等について 6
第	5	章	溶融塩の伝熱
	§	5.1	基本的考え方:
	§	5.2	強制対流熱伝達 · · · · · · · · · · · · · · · · · · ·
	§	5.3	自然対流にる伝熱 6
	§	5.4	相変化を伴う伝熱・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
			5.4 1 溶融と凝固・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
			5 4.2 沸騰, 凝縮 6
	§	5. 5	内部発熱を伴う流動伝熱・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
	§	5.6	焼入・冷却・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
	§	5.7	熱交換器 7
	§	5.8	伝熱促進法 · · · · · · · · · · · · · · · · · · ·
			5 8 1 かきとり伝熱・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
			5 8 2 フィンの伝熱・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
	§	5.9	溶融塩の直接接触伝熱問題 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
第	6	章	溶融塩熱技術の適用例
	§	6.1	高温用熱媒体8
	§	6.2	太陽熱発電用蓄熱材8
	§	6.3	太陽熱冷暖房用蓄熱材8
	§	6.4	金属熱処理9
	§	6.5	溶融塩の金属精錬への利用9
	§	6.6	溶融塩増殖炉の開発・・・・・・・9

§ 6.7 核融合ブランケット材 ····································	96
§ 6.8 その他の核工業利用について ··· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·	98
§ 6.9 β-アルミナ隔膜を用いる金属ナトリウムとカセイソーダの電解製造 ·····	100
§ 6.10 石油精製,石油化学および石炭カス化における溶融塩の利用 ·· ·· ·	101
§ 6.11 硝酸塩の取扱いおよび法的規制	103
第7章 溶融塩・熱技術への期待	
§ 7.1 溶融塩によるスモールサイエンスのすすめ ···································	· · · 107
§ 7.2 容融塩技術への期待・· · · · · · · · · · · · · · · · · (伊藤) ·	· · · 107
§ 7.3 溶融塩技術に期待するもの · · · · · · · · · · · · · · · · · · ·	108
§ 7.4 高温の水··· · · · · · · · · · · · · · · · · ·	108
§ 7.4 MSとの出会い(小坂)	109
§ 7.6 溶融塩による酸化ポランシャル制御····································	· · 109
§ 7.7 容融塩の伝熱と熱物性 · · · · · · · · · · · · · · · · · · ·	110
§ 7.8 エネルギー問題打開のために ――研究会への期待―― … ・・・・・・ (古川) …	110
§ 7.9 溶融塩技術開発の優先課題 · · · · · · · · · · · · · · · · · · ·	111
§ 7.10 容融塩について ······(三浦)・	111
§ 7.11 容融塩技術への期待 ····· ··· ··· ··· ··· ··· ··· ··· ···	112
§ 7.12 容融塩技術の今後の展開 · · · · · · · · · · · · · · · · · · ·	112
第8章 総 括	
§ 8.1 熱技術と溶融塩技術 · · · · · · · · · · · · · · · · · · ·	· · · 115
§ 8.2 エネルギー化学と熔融塩技術 副会長 吉 沢 四 郎・	116
[参考]	
・「溶融塩・熱技術研究会」の発足と入会への御依頼会 長 石 野 俊 夫・	119
・「溶融塩・熱技術研究会規約」	120
〔付 録〕	
・溶融塩・熱技術研究会会員名簿	121
あとがき	123