CONTENTS

		Page
	From the Preface to the first English edition	xi
	Preface to the second English edition	xii
	Preface to the third Russian edition	xiii
	Notation	xiv
	I. THE BASIC CONCEPTS OF QUANTUM MECHANICS	
§1.	The uncertainty principle	1
§2.	The principle of superposition	6
§3.	Operators	8
§4.	Addition and multiplication of operators	13
§5.	The continuous spectrum	15
§6.	The passage to the limiting case of classical mechanics	19
§7.	The wave function and measurements	21
	II. ENERGY AND MOMENTUM	
§8.		25
şo. §9.	-	26
§10.		20
§11.	•	30
§12.		35
§13.		37
§14.		38
§15.	•	41
§16.		45
0	•	
	III. SCHRÖDINGER'S EQUATION	50
§17.		50
§18.		53
§19.		55
§20.		58
§21.	• •	60
§22.	•	63
§23.		67
§24.	5	74
§25.	The transmission coefficient	76
	IV. ANGULAR MOMENTUM	
§26.	Angular momentum	82
§27.	Eigenvalues of the angular momentum	86

§27. Eigenvalues of the angular momentum80§28. Eigenfunctions of the angular momentum89

Con	ton	te
con	เหน	13

		Page
§29.	Matrix elements of vectors	92
§30.	Parity of a state	96
§31.	Addition of angular momenta	99
	V. MOTION IN A CENTRALLY SYMMETRIC FIELD	
§32.	Motion in a centrally symmetric field	102
§33.	Spherical waves	105
§34.	Resolution of a plane wave	112
§35.	Fall of a particle to the centre	114
§36.	Motion in a Coulomb field (spherical polar coordinates)	117
§37.	Motion in a Coulomb field (parabolic coordinates)	128
	VI. PERTURBATION THEORY	
§38.	Perturbations independent of time	133
§39.	The secular equation	138
§40.	Perturbations depending on time	142
§41.	Transitions under a perturbation acting for a finite time	146
§42.	Transitions under the action of a periodic perturbation	151
§43.	Transitions in the continuous spectrum	154
§44.	The uncertainty relation for energy	157
§45.	Potential energy as a perturbation	159
	VII. THE QUASI-CLASSICAL CASE	
§46.	The wave function in the quasi-classical case	164
§47.	Boundary conditions in the quasi-classical case	167
§48.	Bohr and Sommerfeld's quantization rule	170
§49.	Quasi-classical motion in a centrally symmetric field	175
§50.	Penetration through a potential barrier	178
§51.	Calculation of the quasi-classical matrix elements	185
§52.	The transition probability in the quasi-classical case	189
§53.	Transitions under the action of adiabatic perturbations	194
	VIII. SPIN	
§54.	Spin	197
§55.	The spin operator	201
§56.	Spinors	204
§57.	The wave functions of particles with arbitrary spin	208
§58.	The operator of finite rotations	213
§59.	Partial polarization of particles	219
§60.	Time reversal and Kramers' theorem	221
	IX. IDENTITY OF PARTICLES	
§61.	The principle of indistinguishability of similar particles	225
§62.	Exchange interaction	228

vi

	Contents	
		Page
§63.	Symmetry with respect to interchange	232
§64.	Second quantization. The case of Bose statistics	239
§65.	Second quantization. The case of Fermi statistics	245

X. THE ATOM

250
054
254
255
259
264
265
269
277
279
282
287

XI. THE DIATOMIC MOLECULE

§78.	Electron terms in the diatomic molecule	298
§79.	The intersection of electron terms	300
§80.	The relation between molecular and atomic terms	303
§81.	Valency	307
§82.	Vibrational and rotational structures of singlet terms in the diatomic molecule	314
§83.	Multiplet terms. Case a	319
§84.	Multiplet terms. Case b	323
§85.	Multiplet terms. Cases c and d	327
§86.	Symmetry of molecular terms	329
§87.	Matrix elements for the diatomic molecule	332
§88.	Λ -doubling	336
§89.	The interaction of atoms at large distances	339
§90.	Pre-dissociation	342

XII. THE THEORY OF SYMMETRY

§91.	Symmetry transformations	354
§92.	Transformation groups	357
§93.	Point groups	360
§94.	Representations of groups	368
§95.	Irreducible representations of point groups	376
§96.	Irreducible representations and the classification of terms	380

0					
•	an	+0	20	+0	
ີ	'on	LE	п	LA	

		Page
§97.	Selection rules for matrix elements	383
§98.	Continuous groups	387
§ 99.	Two-valued representations of finite point groups	391
	XIII. POLYATOMIC MOLECULES	
§100.	The classification of molecular vibrations	396
§101.	Vibrational energy levels	403
§102.	Stability of symmetrical configurations of the molecule	405
§103.	Quantization of the rotation of a top	410
§104.	The interaction between the vibrations and the rotation of the mol	ecule 419
§105.	The classification of molecular terms	423
	XIV. ADDITION OF ANGULAR MOMENTA	
§106.	3 <i>j</i> -symbols	431
§107.	Matrix elements of tensors	439
§108.	6j-symbols	442
§109.	Matrix elements for addition of angular momenta	448
§110.	Matrix elements for axially symmetric systems	450
	XV. MOTION IN A MAGNETIC FIELD	
§111.	Schrödinger's equation in a magnetic field	453
§112.	Motion in a uniform magnetic field	456
§113.	An atom in a magnetic field	461
§114.	Spin in a variable magnetic field	468
§115.	The current density in a magnetic field	470
	XVI. NUCLEAR STRUCTURE	
§116.	Isotopic invariance	472
§117.	Nuclear forces	476
§118.	The shell model	480
§119.	Non-spherical nuclei	489
§120.	Isotopic shift	494
\$121.	Hyperfine structure of atomic levels	496

3121.	Tryperinte structure of atomic revers	
§122.	Hyperfine structure of molecular levels	499

XVII. ELASTIC COLLISIONS

§123.	The general theory of scattering	502
§124.	An investigation of the general formula	505
§125.	The unitary condition for scattering	508
§126.	Born's formula	512
§127.	The quasi-classical case	518

viii

Contents		ix
		Page
§128.	Analytical properties of the scattering amplitude	523
§129.	The dispersion relation	529
§130.	The scattering amplitude in the momentum representation	532
§131.	Scattering at high energies	535
§132.	The scattering of slow particles	542
§133.	Resonance scattering at low energies	548
§134.	Resonance at a quasi-discrete level	555
§135.	Rutherford's formula	560
§136.	The system of wave functions of the continuous spectrum	563
§137.	Collisions of like particles	567
§138.	Resonance scattering of charged particles	570
§139.	Elastic collisions between fast electrons and atoms	575
§140.	Scattering with spin-orbit interaction	579
§141.	Regge poles	585

XVIII. INELASTIC COLLISIONS

§142.	Elastic scattering in the presence of inelastic processes	591
§143.	Inelastic scattering of slow particles	597
§144.	The scattering matrix in the presence of reactions	599
§145.	Breit and Wigner's formulae	603
§146.	Interaction in the final state in reactions	611
§147.	Behaviour of cross-sections near the reaction threshold	614
§148.	Inelastic collisions between fast electrons and atoms	620
§149.	The effective retardation	629
§150.	Inelastic collisions between heavy particles and atoms	633
§151.	Scattering of neutrons	636
§152.	Inelastic scattering at high energies	640

MATHEMATICAL APPENDICES

§a.	Hermite polynomials	647
§Ь.	The Airy function	650
§c.	Legendre polynomials	652
§d.	The confluent hypergeometric function	655
§e.	The hypergeometric function	659
§f.	The calculation of integrals containing confluent hypergeometric functions	662
Ind	ex	667