Contents

PART I SPECTROSCOPY

- Spectroscopy of Molecular Beams: An Overview, 3
 E. Gough
- 1.1 Introduction, 3
- 1.2 Propagation of Diffraction-Limited Gaussian Beams, 4
- 1.3 Laser Beam-Molecular Beam Interactions: Weak Limit, 6
- 1.4 Quantum Mechanical Description, 8
 - 1.4.1 Weak Limit, 8
 - 1.4.2 General Case, 10
- 1.5 Conclusion 13

2. Magnetic and Electric Resonance Spectroscopy, 15 I. S. Muenter

- 2.1 Introduction, 15
- 2.2 Experimental Considerations for Molecular Beam Spectroscopy, 16
 - 2.2.1 Vacuum Chambers, 16
 - 2.2.2 Molecular Beam Sources 18
 - 2.2.3 Deflecting Fields, 20
 - 2.2.4 Resonance Fields, 26
 - 2.2.5 Radiation Sources, 33
 - 2.2.6 Beam Detection and Signal Processing, 38
 - 2.2.7 Experimental Examples, 41
- 2.3 Optically Selected and Detected Molecular Beam Resonance Experiments, 44
- 2.4 Applications of Beam Resonance Spectroscopy, 46
- 2.5 Data Analysis, 51
- 2.6 Conclusions, 52

x CONTENTS

3. Beam-maser Spectroscopy, 58 A. Dymanus

- 3.1 Historical Note, 58
- 3.2 Beam-maser Principles, 59
- 3.3 Beam-maser Techniques, 62
 - 3.3.1 Sources, 62
 - 3.3.2 Inverting Structures, 64
 - 3.3.3 Stimulating Field Structures, 67
 - 3.3.4 Detection System and Sensitivity, 73
 - 3.3.5 Special Techniques, 76
- 3.4 Applications, 79
 - 3.4.1 Spectroscopy of Atoms, 79
 - 3.4.2 Spectroscopy of Molecules, 83
 - 3.4.3 Collisional Studies, 94

4. Quantum Amplifiers and Oscillators, 103 D. C. Lainé

- 4.1 Introduction, 103
- 4.2 Molecular Beam Masers with Electrostatic State Selection, 104
 - 4.2.1 Basic System, 104
 - 4.2.2 Molecular Beam Maser Amplifiers, 105
 - 4.2.3 Molecular Beam Maser Oscillators, 106
- 4.3 Atomic Beam Masers with Magnetic State Selection, 112
 - 4.3.1 Principles of Operation, 112
 - 4.3.2 Experimental Methods for Hydrogen Masers, 114
 - 4.3.3 Maser Signal Detection, 117
 - 4.3.4 Applications of the Hydrogen Maser, 119
- 4.4 Rydberg-Atom Beam Masers, 120
 - 4.4.1 Beam Preparation and the Rydberg-Atom Beam Maser, 120
 - 4.4.2 Dynamic Properties of Rydberg-Atom Beam Masers, 123
 - 4.4.3 Applications, 125
- 4.5 Dimer Beam Lasers, 126
- 4.6 Radiation Generation Through Beam Nonlinearities, 128

5. Metrology with Molecular Beams, 132 D. C. Lainé

- 5.2 Introduction, 132
- 5.2 Active Beam Frequency Standards, 136
 - 5.2.1 Introduction, 136
 - 5.2.2 The Ammonia Maser Oscillator, 137
 - 5.2.3 The Hydrogen Maser Oscillator, 141
 - 5.2.4 Other Types of Beam-Excited Oscillators, 149

5.	.3	Passive	Beam	Frequency	Standards,	150

- 5.3.1 Introduction, 150
- 5.3.2 The Cesium Beam Frequency Standard, 153
- 5.3.3 Other Types of Atomic Beam Frequency Standards, 163
- 5.3.4 Molecular Beam Frequency Standards, 170
- 5.3.5 Optical Ramsey Resonances, 173
- 5.3.6 Beams of Slowed Atoms, 175

5.4 Intercomparison of Beam and Other Frequency Standards, 178

- 5.5 Atomic Beams and Standards of Length and Voltage, 181
- 5.6 Applications of Beam Frequency Standards, 182
 - 5.6.1 Radioastronomy, 183
 - 5.6.2 Relativity, 183
 - 5.6.3 Navigation, 183
 - 5.6.4 Communications, 184
 - 5.6.5 Standards of Length and Voltage, 184
 - 5.6.6 Spectroscopic Studies, 184
 - 5.6.7 Other Applications, 185

6. Infrared Laser Spectroscopy, 192 R. E. Miller

- 6.1 Introduction, 192
- 6.2 Experimental Techniques, 193
 - 6.2.1 Direct Absorption, 193
 - 6.2.2 Laser-Induced Fluorescence, 194
 - 6.2.3 Optothermal Detection, 196
 - 6.2.4 Mass Spectrometric Detection, 197
 - 6.2.5 Far-Infrared Laser Methods, 199
- 6.3 Infrared Laser Sources, 199
 - 6.3.1 Diode Lasers, 201
 - 6.3.2 F-Center Lasers, 201
 - 6.3.3 Difference Frequency Lasers, 202
 - 6.3.4 CW Line-Tunable Lasers, 202
 - 6.3.5 Far-Infrared Lasers, 203
 - 6.3.6 Pulsed Lasers, 203
- 6.4 Sensitivity, 203
- 6.5 Resolution, 207
- 6.6 Summary, 210

7. Visible and Ultraviolet Spectroscopy: Physical Aspects, 213 W. Demtröder

- 7.1 Introduction, 213
- 7.2 Spectral Profiles of Absorption Lines in Collimated Beams, 215

- 7.2.1 Reduction of the Doppler Width, 215
- 7.2.2 Transit Time Broadening, 217
- 7.2.3 Saturation and Power Broadening, 218
- 7.3 Sensitive Detection Techniques, 219
 - 7.3.1 Excitation Spectroscopy, 220
 - 7.3.2 Two-Photon Ionization (TPI) Spectroscopy, 221
 - 7.3.3 Pulsed Versus CW Lasers for TPI Spectroscopy, 222
 - 7.3.4 Coherent Anti-Stokes Raman Spectroscopy, 224
- 7.4 Laser Spectroscopy in Effusive and Supersonic Beams, 225
 - 7.4.1 Laser Spectroscopy in Collimated Effusive Beams, 225
 - 7.4.2 Simplification of Molecular Spectra in Cold Beams,
 - 7.4.3 Measurements of Velocity Distributions, 229
 - 7.4.4 Measurements of Rotational and Vibrational Temperatures, 231
 - 7.4.5 Examples of Molecular Spectroscopy in Supersonic Beams, 233
- Special Techniques of Molecular Beam Spectroscopy, 7.5 235
 - 7.5.1 Nonlinear Laser Spectroscopy in Molecular Beams,
 - 7.5.2 Optical Double-Resonance Spectroscopy, 238
 - 7.5.2.1 Optical-Optical V-type Double Resonance,
 - 7.5.2.2 Stepwise Excitation and Selective Population of Rydberg States, 242
 - 7.5.2.3 Optical-Radiofrequency Double Resonance Spectroscopy in Molecular Beams, 244
 - 7.5.3 Time-Resolved Laser Spectroscopy in Molecular Beams, 246
 - 7.5.4 Coherent Spectroscopy in Molecular Beams, 247
 - 7.5.4.1 Quantum Beat Spectroscopy, 247
 - 7.5.3.2 Level-Crossing Spectroscopy, 249
 - 7.5.5 Optical Cooling of Atomic Beams, 250
- 7.6 Coaxial Laser Spectroscopy in Fast Beams, 252
- Conclusion, 256 7.7

8. Photofragment Spectroscopy, 261 J. W. Hepburn

- Introduction, 261 8.1
- The Photofragment Spectroscopy Experiment, 262
- Photofragment Translational Spectroscopy, 265 8.3
 - 8.3.1 Apparatus, 265
 - 8.3.2 Signal, 268
 - 8.3.3 Determination of Primary Photochemistry, 269
 - 8.3.4 Product Energy Distributions, 270
 - 8.3.5 Product Angular Distributions, 272

- 8.4 State-to-state Photochemistry: Laser Detection of Photofragments, 273
 - 8.4.1 Apparatus, 273
 - 8.4.2 Product Energy Distributions and Product Induction Times, 276
 - 8.4.3 Doppler Spectroscopy and Product Correlations, 277
 - 8.4.4 Recent Developments, 281
- 8.5 Photofragmentation of Glyoxal, 282
- 8.6 Photolytic Supersonic Sources, 285

9. Fourier-Transform Microwave Spectroscopy, 289 A. C. Legon

- 9.1 Introduction, 289
- 9.2 The Spectrometer, 290
 - 9.2.1 Physical Principles and the Sequence of Events, 290
 - 9.2.2 Formation and Properties of the Gas Pulse, 292
 - 9.2.3 Formation of the Microwave Radiation Pulse, 294
 - 9.2.4 Interaction of the Radiation and Gas Pulses within the Fabry-Pérot Cavity, 295
 - 9.2.5 Coherent Spontaneous Emission from the Gas and Its Detection, 296
 - 9.2.6 Modification to Allow Investigation of Rotational Stark and Zeeman Effects, 300
- 9.3 Shape and Intensity of Observed Rotational Transitions, 300
 - 9.3.1 Lineshape and Resolution, 300
 - 9.3.2 Sensitivity, 303
- 9.4 Molecular Properties of Weakly Bound Dimers from Ground-State Rotational Spectra, 305

Fourier-Transform Methods: Infrared, 309 J. Sloan

- 10.1 Introduction, 309
- 10.2 Experimental Aspects, 310
 - 10.2.1 The Michelson Interferometer, 310
 - 10.2.2 Observed Interference Signal, 310
 - 10.2.3 Resolution and Lineshape, 312
 - 10.2.4 Signal-to-Noise Considerations, 313
 - 10.2.5 Field-of-View Considerations, 314
 - 10.2.6 Signal Requirements, 316
- 10.3 Computational Aspects, 319
 - 10.3.1 Discrete Data Sampling, 319
 - 10.3.2 The Discrete Fourier Transform, 319
 - 10.3.3 Numerical Methods Based on Transforms, 319

PART II SURFACE SCATTERING

11. General Principles and Methods, 327 U. Valbusa

- 11.1 Introduction, 327
- 11.2 Experimental Techniques for Gas-Surface Scattering, 330
 - 11.2.1 General Requirements of a Surface-Scattering Apparatus, 330
 - 11.2.2 Sources, 330
 - 11.2.3 Scattering Chamber, 334
 - 11.2.4 Crystal Manipulator, 335
 - 11.2.5 Detector, 335
 - 11.2.6 Surface Preparation, 336

12. Elastic Scattering of Atoms, 340 G. Boato

- 12.1 Introduction, 340
- 12.2 Experimental Methods, 342
 - 12.2.1 Physical Conditions and Technical Requirements for Elastic Scattering Experiments, 342
 - 12.2.2 Typical Diffractive Scattering Experiments, 344
 - 12.2.3 The Analysis of Elastic Diffraction Patterns and Its Problems, 346
- 12.3 Surface Structure and Corrugation, 350
 - 12.3.1 Rainbow Scattering (Classical Interpretation), 350
 - 12.3.2 Hard Corrugated Wall Model (Quantum Theory), 352
 - 12.3.3 Realistic Potentials and Close-Coupling Calculations, 354
- 12.4 The Average Atom-Surface Potential Well Derived from Measurements of Resonances, 355
 - 12.4.1 Experimental Conditions for Observing and Assigning Resonant Structures, 355
 - 12.4.2 Band Structure Effects, 358
- 12.5 Thermal Attenuation of Elastic Intensities, 360

13. Rotational Inelastic Scattering, 366 L. Mattera

- 13.1 Introduction, 366 ·
- 13.2 Experimental Methods, 368
 - 13.2.1 Molecular Hydrogen Beams, 368
 - 13.2.2 Elastic Scattering, 371
 - 13.2.3 Rotationally Inelastic Diffraction Peaks, 374
- 13.3 Bound-State Resonances, 377
 - 13.3.1 Diffractionally Mediated Selective Adsorption, 377 13.3.2 Rotationally Mediated Selective Adsorption, 380
- 13.4 Conclusions, 382

14. Single-Phonon Inelastic Helium Scattering, 384

R. B. Doak

14.1 Introduction, 384

- 14.1.1 Why Helium Beams?, 385
- 14.1.2 Scope of This Chapter, 387
- 14.2 Phonons, 387
 - 14.2.1 Phonon Dispersion and Interatomic Bonding, 390
 - 14.2.2 Surface Phonons, 391
- 14.3 Measuring Surface Phonons with Helium Scattering, 395
 - 14.3.1 Experimental Data, 396
 - 14.3.2 Kinematics, 398
 - 14.3.3 Non constant Q Scans, 402
 - 14.3.4 Transforming from TOF to ΔE , 403
- 14.4 Understanding the Data: Complications and Pitfalls, 404
 - 14.4.1 Weare Parameter, Thermal Distributions, 405
 - 14.4.2 Kinematical Focusing, 406
 - 14.4.3 Bound-State Resonances, 407
 - 14.4.4 Phonyons, 408
- 14.5 Energy Analysis: Time-of-flight Considerations, 411
 - 14.5.1 TOF Timing and Calibration, 411
 - 14.5.2 Baseline Resolution, Elastic Scattering, 414
 - 14.5.3 Baseline Resolution, Inelastic Scattering, 415
- 14.6 Experimental Apparatus, 420
 - 14.6.1 Scattering Angles, 423
 - 14.6.2 Variable θ_{sd} , 425
 - 14.6.3 Beam Source, 427
 - 14.6.4 Beam Collimation, 429
 - 14.6.5 Beam Chopper, 431
 - 14.6.6 Target Chamber, 434
 - 14.6.7 Differential Pumping, 436
 - 14.6.8 Variable Flight Path, 437
 - 14.6.9 Detector, 438
 - 14.6.10 Computer Control, 439

Multiple-Phonon Inelastic Scattering, 444 D. J. Auerbach

- 15.1 Introduction and Scope, 444
- 15.2 Experimental Methods, 445
 - 15.2.1 Instrumental Considerations, 446
 - 15.2.2 Classification of Experimental Methods, 447
- 15.3 Angular Distributions, 449
 - 15.3.1 Examples and Interpretation, 449
 - 15.3.2 Limitations, 451

- 15.4 Velocity Distributions, 451
 - 15.4.1 Interpretation of Time-of-Flight Data, 452
 - 15.4.2 Direct Inelastic and Trapping-Desorption Scattering, 454
 - 15.4.3 Direct Inelastic Scattering, 455
 - 15.4.4 Angular and Velocity Distributions for Molecules, 456
- 15.5 State-Resolved Measurements, 457
 - 15.5.1 Rotational and Vibrational Inelastic Scattering, 457
 - 15.5.2 State Selection with Velocity Resolution, 460
 - 15.5.3 Experiments with State Prepared Beams, 461

16. Scattering from Disordered Surfaces, 463 G. Comsa and B. Poelsema

- 16.1 Introduction, 463
- 16.2 TEAS from Ideal Close-Packed Metal Surfaces, 465
 - 16.2.1 Short History, 465
 - 16.2.2 Deviations from Ideality of Close-Packed Metal Surfaces, 466
 - 16.2.2.1 Periodic Deviations, 466
 - 16.2.2.2 Nonperiodic Deviations, 466
- 16.3 Principle of the Methods to Investigate Disorder, 467
 - 16.3.1 Scattering from a Disordered Distribution of Adsorbates and Defects, 467
 - 16.3.1.1 Total Cross-section for Diffuse Scattering, 467
 - 16.3.1.2 The Origin of the Cross-section for Diffuse Scattering, 468
 - 16.3.1.3 The Angular Dependence of Σ: Experimental and Theoretical Language, 468
 - 16.3.1.4 The Overlap Approach, 469
 - 16.3.1.5 The High Coverage Region, 470
 - 16.3.1.6 Overlap Between Cross-sections of Different Species, 471
 - 16.3.2 Scattering from Terraces of Random Width, 472
- 16.4 "Ideal" Surfaces and Experiments, 474
- 16.5 Mutual Interaction Between Adsorbates, Between Defects, and Between Adsorbates and Defects (Examples), 476
 - 16.5.1 Mutual Repulsion of Adsorbates CO/Pt(111), 476
 - 16.5.2 Mutual Attraction Between Mobile Adsorbates: Xe/Pt(111), 476
 - 16.5.3 Mutual Attraction Between Vacancies with Restricted Mobility: Pt(111) at $T_s = 80 \text{ K}$, 477
 - 16.5.4 Attraction Between Adsorbates and Defects, 477
 - 16.5.4.1 Adsorption on a Surface with Defects, 478
 - 16.5.4.2 Direct Monitoring of Adsorbate Diffusion, 479
 - 16.5.4.3 Control Experiment—Defects and Islands, 479

16.6	The Monitoring of Adsorbate Coverage and
	Adsorption/Desorption Kinetics (Examples), 480

16.6.1 Adsorption Kinetics, 480

16.6.1.1 The Saturation of Pt(111) with Hydrogen, 480

16.6.1.2 Measurement of Sticking Probability Changes, 480

- 16.6.2 Equilibrium Measurements, 481
- 16.6.3 Desorption of Adsorbates, 482

16.7 Thermal Annealing of Sputtering Damage (Examples), 483

- 16.7.1 In-phase Plots During Ion Damaging at Various Temperatures, 484
- 16.7.2 Antiphase Plots During Ion Damaging, 484
 - 16.7.2.1 Low Temperature Range, 484
 - 16.7.2.2 Medium Temperature Range, 484
 - 16.7.2.3 High Temperature Range, 485
- 16.7.3 Interferometric Measurement of Sputtering Yields, 486
- 16.8 Monitoring of Crystal Growth, 486

17. Reactive Scattering, 488 M. Asscher and G. A. Somorjai

- 17.1 Introduction, 488
- 17.2 Methods, 489
 - 17.2.1 Scattering Chamber, 489
 - 17.2.2 Beam Sources, 493
 - 17.2.3 Data Analysis, 495
- 17.3 Reactive Scattering: Effusive Beam Sources, 499
 - 17.3.1 H₂-D₂ Exchange and Recombination Reactions, 499
 - 17.3.2 CO Oxidation, 502
 - 17.3.3 Highly Reactive Beams, 503
- 17.4 Reactive Scattering: Supersonic Beams, 505
 - 17.4.1 Activated Dissociative Adsorption and Associative Desorption, 506
 - 17.4.2 Complex Surface Reactions: Products Energy Distribution, 509
 - 17.4.3 High Energy Beams: Surface Collision-Induced Dissociation, 512
- 17.5 Concluding Remarks, 514

Index, 523