

CONTENTS

~	T
CITTA DITTED	

Elementary physical processes in atom and ion sources	
1.1 Excitation of atoms and molecules	11
1.1.1 Excitation of atoms and molecules by electron impact	11
1.1.2 Excitation by atom or ion impact	22
1.1.3 Excitation by light quanta	24
1.2 Ionization of atoms and molecules	25
1.2.1 Ionization of atoms or molecules by electron impact	25
1.2.2 Ionization of atoms or molecules by atom or ion impact	37
1.2.3 Ionization of atoms and ions by light quanta	41 44
1.2.4 Autoionization	44 46
1.2.5 Surface ionization	
1.3 Negative ions	52
1.4 Charge transfer	56
1.5 Recombination	64
1.6 Dissociation	72
1.7 Diffusion and mobility of ions and electrons	76
1.8 Secondary electron emission	79
•	
Chapter II	
Atom sources	
2.1 Introduction	84
2.2 Extraction and collimation of atom beams	85
2.2.1 Effusion atom beam	85
2.2.1.1 Effusion across long channels	87
2.2.1.2 Effusion through multi-collimator	89
2.2.2 Supersonic atom beams	90
2.2.3 Velocity distribution of atomic beams	96
2.3 Atomic gas sources	98
2.4 Thermal atom sources	100
2.4.1 Atom sources of high melting elements	106
2.5 Molecular dissociation	110
2.5.1 Thermal dissociators	110
2.5.2 Low frequency dissociators (Wood-tube)	113
2.5.3 High frequency dissociators	114
2.5.4 Arc- discharge dissociators	118

8 contents

2.6	Fast	atom beam sources	119
	2.6.1	Sources of atom or molecular beams with energies from 0.5 to 20 eV	119
	2.6.2	Sources of atom beams with energies in the range 10 to 10 ⁶ eV	121
Сн	APTER	III	
Ion	sour	ces	
3.1	Intro	duction	127
3.2	Elect	oron impact ion source	128
	20 0	ace ionization ion sources	134
		discharge ion sources	140
0.1		Townsend-type gas discharge	141
		Glow discharge	146
		Arc-discharge at low gas pressure	148
		High frequency gas discharges	153
		3.4.4.1 Alternating electric field or linear high frequency discharge	154
		3.4.4.2 Alternating magnetic field or ring high frequency discharge	157
	3.4.5	Effect of static magnetic fields on gas discharges	158
3.5	High	voltage arc-discharge ion sources	161
3.6	Low	voltage arc-discharge ion sources	162
3.7	Arc-c	lischarge ion sources in magnetic field	168
	3.7.1	Arc-discharge ion sources in magnetic field with heated cathode	169
		3.7.1.1 The heated cathode arc-discharge ion sources with homogeneous magnetic field	169
		3.7.1.2 Hot cathode arc-discharge ion sources in an inhomogeneous magnetic field	170
	3.7.2	Arc-discharge ion sources with heated cathode and oscillating electrons in magnetic field	176
		3.7.2.1 Ion sources with oscillating electrons in a homogeneous magnetic field	177
		3.7.2.2 Ion source with hot cathode and oscillating electrons in an inhomogeneous magnetic field	181
	3.7.3	Cold cathode arc-discharge ion sources with oscillating electrons in magnetic field	183
		3.7.3.1 Cold cathode Penning-type ion sources with axial ion-extrac-	100
		tion	185
		3.7.3.2 Cold cathode Penning-type ion source with transversal ion extraction	189
3.8	High	frequency gas discharge ion sources	191
		High frequency ion sources with probe extracting system	193
	3.8.2	High frequency ion sources with diaphragm-type extracting system	202
3.9	Ion s	ources ionizing solid state elements	209
		Ion sources with evaporator mounted outside of the ionizer	210
		Ion sources with evaporator inside the ionizer chamber	221
	3.9.3	Ion sources with metal evaporation by electron bombardment	224
	3.9.4	Ion source with metal vapour sputtered from the cathode due to ion bombardment	225

CONTENTS 9

CHAPTER IV

o		
Special	ion	sources

$\sim P$	cotar t		
4.1	Nega	ative ion sources	231
		Ion sources with direct extraction of negative ions	231
		Negative ion sources utilizing charge transfer	233
		4.1.2.1 Negative ion sources with long extracting channel	234
		4.1.2.2 Negative ion sources with separate charge transfer target	236
	4.1.3	Negative ion sources utilizing surface ionization	244
4 9			244
4.2		uction of multiply charged ions	244
		Production of multiply charged ions in ion sources Production of multiply charged ions by electron stripping	251
4.3		ces of pulsed ion beams	254
	4.3.1	Ion sources for the production of ion current pulses of longer than microsecond duration	255
	4.3.2	Methods for the production of nanosecond ion current pulses	258
		4.3.2.1 Pulsing by oscilloscopic method	258
		4.3.2.2 Pulsation by bunching method	261
		4.3.2.3 Bunching of reaction products formed in the target	270
	4.3.3	Systems for the production of nanosecond ion current pulses	273
		4.3.3.1 Systems bunching by velocity modulation	274
		4.3.3.2 Systems bunching by magnetic compression	278
		4.3.3.3 Systems bunching by travelling wave	279
4.4	Nucle	ear spin-polarized ion sources	281
		Introduction	281
		The hyperfine structure of energy levels in hydrogen atoms	282
		Separation of atomic components of an atomic beam in different spin	
	62 KG PAC	states	288
		Nuclear spin polarization of hydrogen atom beams excited to $2S_{1/2}$ state	295
		Nuclear spin polarization of atoms by optical pumping	297
		Nuclear spin polarization by polarized electron capture	298
	4.4.7	Nuclear spin polarized ion beam sources	299
		4.4.7.1 Polarized ion sources using inhomogeneous magnetic field for separation	299
		4.4.7.2 Polarized ion sources using the Lamb shift of the $2S_{1/2}$ meta-	
		stable level	306
		4.4.7.3 Polarized ion sources using optical pumping	313
Сн	PTER	v	
Dis	tributi	on of charges and masses in ion beams	
5.1	Intro	duction	315
5.2	Relat	ive concentrations of the different ions in hydrogen ion sources	315
5.3	Mass source	distribution of hydrogen ion beams extracted from different types of ion	917
		Mass spectrum of ion beams from capillary arc-discharge ion sources	$\frac{317}{318}$
		Mass spectrum of the ion beam extracted from a duoplasmatron	319
	5.3.3	Mass spectrum of ion beams extracted from ion sources with oscillating	913
		electrons	320
		Mass spectrum of ion beams extracted from high frequency gas discharge ion sources	322

10 CONTENTS

5.4 Charge distribution of multiply charged ion beams extracted	from ion sources	324
5.5 Experimental apparatus for mass distribution analysis of io	n beams	327
5.6 Energy spread of ions emitted from ion sources		329
5.7 Experimental apparatus for measuring the spread of ion ener extracted from ion sources		337
CHAPTER VI		
Extraction of ions from ion sources and forming of the extracted be	ϵam	
6.1 Extraction of ions formed in the ion sources	ŗ	340
6.2 Ion-optical properties of the extracting systems		342
6.2.1 Ion-optical properties of probe-type extracting system		343
6.2.2 Ion-optical properties of diaphragm-type extracting		347
6.2.3 Ion-optical properties of the plasma surface balloon discharge volume	ed out from the	350
6.3 Properties of beams extracted from ion sources	;	351
6.3.1 The emittance diagram of ion sources	Š	351
6.3.2 Determination of the emittance diagram of the ion	source	353
APPENDIX		357
Measurement of particle beam currents extracted from atom or i	on sources	357
Physical quantities		366
Boiling, melting and sublimation temperatures at $p = 760$ m	nm Hg of a few	
materials of interest [1240]		367
Periodic system of elements		368
Table 1. Low lying atomic levels and the corresponding values of	term and energy	370
Table 2. Metastable excited states		373
Table 3. The first ionization potentials and the corresponding ve	lues of λ_i	374
Table 4. Values of the ionization energy $E_i^{(n+1)} - E_i^n = E$ of atom		376
Table 5. Experimental and theoretical values of the multiple section for He, Ne, Ar and Hg	ionization cross	378
Table 6. Ionization cross section values for metastable atom imp		379
Table 7. State of autoionization		380
Table 8. Autoionization states of H ⁻ ions		380
Table 9. Excitation energies and level widths of autoionization sta		$\frac{381}{382}$
Table 10. Binding energies of electrons in negative ions		385
Table 11. Molecular dissociation energies Table 12. Values of the gas kinetical collision cross section σ_k an		900
diameter δ	a or the atomic	388
Table 13. Melting and boiling points of metals. Temperatures at g	iven pressures	389
Table 14. Melting and boiling points of metal oxides		391
Table 15. Values of the work function φ for elements and composideration	unds under con-	392
Table 16. Values of the secondary electron emission coefficient δ_{em} associated primary electron energy E_{em}		394
Table 17. Values of the surface recombination coefficient of mater inside wall of discharge chambers for hydrogen atoms		396
Table 18. $\xi = l_n \frac{r_a}{r_k} - 0.3 \left(l_n \frac{r_a}{r_k} \right)^2 + \dots$		396
r_k (r_k) $References$		397
Subject index		424