

CONTENTS

Contributors	ii
Participants	xi
Preface (in French and English)	хv
PART I-LOW ENERGY ATOMIC PHYSICS	
Course 1. Introduction to quantum electrodynamics, by Claude Cohen-Tannoudji	1
General introduction	5
1. Classical electrodynamics	7
1.1. Introduction	7
1.2. Basic equations in ordinary space	7
1.3. Electrodynamics in reciprocal space	11
1.4. Normal variables	23
2. Quantum electrodynamics in Coulomb gauge – general framework	33
2.1. Introduction	33
2.2. Quantization in Coulomb gauge – elementary approach	36
2.3. Evolution in time	39
2.4. Structure of the Hamiltonian	44
2.5. Electric dipole approximation	49
3. Quantum electrodynamics in Coulomb gauge - physical discussion	61
3.1. Introduction	61
3.2. Free field observables	62

xxiv Contents

3.3. Elementary excitations of the quantized free field – photons	64
3.4. Some properties of the vacuum	67
3.5. Quasiclassical states	68
3.6. Analysis of interference phenomena	72
4. Vacuum fluctuations and radiation reaction: identification of their respec- tive contributions	
Reprint of a paper by Dalibard, J., J. Dupont-Roc and C. Cohen-Tannoudji	
(1982) J. Physique 43, 1617	80
4.1. Introduction	80
4.2. The quantum form of the Abraham-Lorentz equation	85
4.3. Identification of the contributions of vacuum fluctuations and self-	00
reaction to the rate of variation of an arbitrary atomic observable	93
4.4. Extension of the previous treatment to a system $\mathcal S$ interacting with a	
large reservoir \mathcal{R}	100
4.5. Physical discussion. Contributions of vacuum fluctuations and self-	
reaction to the radiative corrections and radiative damping of an	
atomic electron	107
4.6. Conclusion	121
Appendix A: Calculation of the source fields	121
Appendix B: Correlation function and linear susceptibility of the field	123
References to section 4	124
5. The effective Hamiltonian method	126
5.1. Introduction – general idea	126
5.2. Calculation of the effective Hamiltonian	127
5.3. Application to radiative corrections in the nonrelativistic limit	131
6. Simple introduction to interacting quantized Dirac and Maxwell fields	136
6.1. Introduction	136
6.2. A brief review of the Dirac equation	137
6.3. Second quantization of the Dirac equation	142
6.4. Justification of the single particle Hamiltonians used for nonrelativistic	
electrons	147
References	155
Seminar 1. Effective Hamiltonian approach to g – 2 – relativis- tic calculation, by Jacques Dupont-Roc and Claude	
	157
Cohen-Tannoudji	13/
1. Introduction	158
2. General method	159
2.1. Hamiltonian H – definition of H_0 and V	159
2.2. Relevant manifolds of H_0	161
2.3. Expression of the effective Hamiltonian	162

Contents	xxv
 Calculation of the effective Hamiltonian Contribution of the Coulomb interaction Contribution of transverse photons Transformation to an "even" effective Hamiltonian; final results 	163 163 170 173
 4. Physical discussion 4.1. Comparison with non-relativistic calculations 4.2. Contribution of high-frequency modes – mass renormalization 4.3. Spin anomaly (g - 2)/g 	175 175 176 178
Seminar 2. Non-classical properties of resonance fluorescence light, by Jean Dalibard and Serge Reynaud	181
Course 2. Rydberg atoms and radiation in a resonant cavity, by Serge Haroche	193
1. Introduction: motivation and outline of this course	197
2. Description of Rydberg atom radiative properties and basic experimental	199
techniques 2.1. Why radiative properties of Rydberg atoms are interesting to study	199
2.1.1. Binding energy of Rydberg levels	200
2.1.1. Dinding energy of Kydolerg levels 2.1.2. Atomic size and electric dipole matrix elements between nearby levels	201
2.1.3. Transition frequencies and wavelengths for $\Delta n \sim 1$ transitions	201
2.1.4. Spontaneous emission rate from an nl level with $l \le n$ (eccentric	000
orbits) 2.1.5. Spontaneous emission rate from an nl level with $l \sim n$ (circular	202
orbits)	203
2.1.6. Absorption rate for broadband resonant fields: case of black-	200
body radiation	204
2.2. How to couple a Rydberg transition to a single radiation mode?	206
2.3. Brief survey of the experimental techniques developed to study these	
effects	208
2.3.1. Preparation of Rydberg atoms in a resonant cavity	208
2.3.2. Realization of a true two-level atom system	209
2.3.3. Detection of Rydberg atom evolution	210
2.3.4. Detection of the millimeter-wave radiation emitted by the atoms 2.3.5. Generation of external radiation acting on the atoms	213 213
_	
3. Formal description of field and atomic systems	214
3.1. Description of the single-mode field3.2. The two-level atom system	214 216
3.3. The "atom + field" system Hamiltonian	220
3.4. The symmetry hypothesis	221

xxvi Contents

4.	Rela	axation of the "atom + field" system	223
		Brief summary of relaxation theory	224
	4.2.	First example of relaxation theory: spontaneous emission and black-	
		body induced effects in a two-level atom system	226
		4.2.1. Single-atom case	227
		4.2.2. N two-level atoms: superradiance	228
	43	Second example of relaxation theory: damping of a harmonic oscillator	
		into a $T = 0$ and a $T \neq 0$ K reservoir	230
	44	Relaxation of the "Rydberg atom-single field mode" system	234
	7.7.	relaxation of the reydoerg atom-single field flode system	254
5.	Sins	gle Rydberg atom in a cavity	237
		Spontaneous emission in the cavity at $T = 0 \text{ K}$	237
		5.1.1. The two regimes of atomic decay	237
		5.1.2. Single atom spontaneous emission at $T = 0$ K described in the	== :
		"dressed atom" basis	243
	52	Spontaneous emission at a finite temperature: Rabi nutation in a	210
	5.2.	chaotic field	246
	5 2	Rabi nutation driven by a coherent field: periodic collapse and revival	240
	3.3.	of the quantum mechanical oscillation	253
		of the quantum mechanical oscillation	233
6	Call	lective behaviour of N Rydberg atoms in a resonant cavity	257
U.		Collective emission of N atoms in a cavity: the two regimes	259
	0.1.	6.1.1. Regime of oscillations in a large Q cavity	259
			266
		6.1.2. Superradiant regime in a moderate Q cavity	200
	6.2.	Quantitative analysis of the symmetrical superradiant evolution for an	260
		ensemble of N two-level atoms in a low Q resonant cavity	269
		6.2.1. Simple evaluation of emission time and time fluctuations	272
		6.2.2. Fluctuationless trajectories: the quasi-classical "probability	252
		packets"	273
		6.2.3. The initial quantum stage of superradiance	277
		6.2.4. The superradiance density matrix as a linear superposition of	
		quasi-classical probabilities	279
		6.2.5. Physical discussion	280
		Superradiance in the presence of a thermal field	284
	6.4.	Experimental study of superradiant Rydberg atom systems in cavities	288
		6.4.1. A study of expectation values ("average" evolution)	288
		6.4.2. Maser thresholds	289
		6.4.3. Statistics of Rydberg atom emission	290
	6.5.	Collective absorption of blackbody radiation by two-level atoms in a	
		cavity	292
		6.5.1. Thermodynamical equilibrium of the atomic system	292
		6.5.2. Evolution towards equilibrium	294
		6.5.3. Experimental evidence of collective absorption in Rydberg atom	
		systems	296
	6.6	Collective behaviour of atoms in a cavity revisited in the Bloch-vector	_,
	0.0.	picture	298
		historia	2,0
7	Cor	nclusion	305
		ences	307
-		/IIVVJ	507

Contents	xxvii
Seminar 3. Laser spectroscopy of atomic Rydberg states: inter- action with strong fields, by Sylvain Liberman and	244
Christophe Blondel	311
Introduction	312
1. Spectroscopy of Rydberg atoms	313
1.1. An example with Kr	313
1.2. Rydberg series perturbed by valence levels. Example of ytterbium	315
spectrum 1.3. Autoionizing Rydberg series perturbed by an electric field	317
1.4. Rydberg levels perturbed by an electromagnetic field	320
2. Photoionization of atoms in the presence of an electric field	326
2.1. Dissymmetric lineshapes (Fano profiles)	326
2.2. Field induced stabilization of Stark states	329
2.3. Photoionization cross section of excited Na atoms in the presence of an	227
electric field	337 343
2.4. Photoionization Stark spectra of ytterbium 2.4.1. General features	343
2.4.2. Experimental set up	345
2.4.3. Results	346
References	349
Seminar 4. Rydberg atoms in magnetic fields – the diamagnetic behaviour, by Dominique Delande, François Biraben and Jean-Claude Gay	351
1. Introduction	352
2. General formulation	353
2.1. Hamiltonian of the system	353
2.2. Classical equation of motion	354
2.3. Constants of the motion – orders of magnitude	355
2.4. The Coulomb problem2.5. The Landau problem	356 356
3. Methods of resolution 3.1. General topics	357 357
3.2. Ultra low-field limit: Zeeman effect $(\gamma n^4 \le 1)$	358
3.3. Low-field limit: diamagnetism $(\gamma n^3 \le 1)$	358
3.3.1. Classical point of view	358
3.3.2. Quantum point of view: inter-l-mixing regime $(\gamma n^{7/2} \le 1)$	359
3.3.3. Inter-n-mixing regime $(\gamma n^3 \ll 1)$	361
 3.3.4. Non-hydrogenic atoms 3.4. Strong-field mixing regime (γn³ = 1) 	362
	100000000000000000000000000000000000000
	363
3.4.1. Classical point of view 3.4.2. Quantum point of view	100000000000000000000000000000000000000

3.4.3. Semi-classical methods

3.5. High-field limit $(\gamma n^3 \gg 1)$

xxviii Contents

4. Experimental investigation	368
4.1. Statement in low-resolution experiments	368
4.2. Ideal experimental situation	368
4.3. Present status of the experiments	369
4.4. Experimental results	370
4.4.1. Diamagnetism in the low-field regime	370
4.4.2. Strong-field mixing regime	372
4.4.3. Landau regime	376
5. Conclusions	377
References	378
Course 3. Atomic particles in traps, by Peter E. Toschek	381
1. Why localization, why cooling of atomic particles?	385
2. Traps for ions and neutrals	386
2.1. The Penning trap	386
2.2. The r.f. trap	390
2.2.1. Spherically symmetric trap	393
2.2.2. Comparison of r.f. trap with d.c. (e.g. Penning) trap	394
2.2.3. Number of stored ions	394
2.2.4. Rigorous trap dynamics	395
2.2.5. Observation of trapped ions	396
2.3. Electrostatic trapping of neutrals	397
2.4. Electrostatic and magnetostatic ion traps	401
3. Spectroscopic applications of trapped ions	402
3.1. R.f. spectroscopy of ³ He ⁺ in r.f. trap	402
3.2. Optical pumping and r.f. spectroscopy of trapped ¹⁹⁹ Hg ⁺	406
3.3. Electrons in traps	407
3.4. Metastable ³ He ⁺	407
3.5. Highly-charged ions	408
3.6. Charge transfer	409
4. Trapping atomic particles in light beams	410
4.1. Mechanical effects of light	410
4.2. Trapping by recoil in standing light waves	412
4.3. Trapping by gradient forces in macroscopic volumes	414
4.4. Trap configurations	415
5. Cooling of trapped particles	417
5.1. Cooling by collisions with background gas	417
5.2. Energy dissipation in tuned resonance circuit	418
5.3. Optical cooling - general aspects	420
5.4. Cooling rate for free atoms	421
5.5. Cooling of bound particles	423
5.6. Cooling power and cooling limits	425
5.7. Other models of cooling	428
6. Spectroscopy of trapped and cooled particles	429
6.1. Clouds of ions	430

Contents	xxix
6.1.1. The Ba ⁺ experiments 6.1.2. The Mg ⁺ experiments 6.1.3. The Be ⁺ experiments 6.2. Single ions in traps 6.2.1. The Ba ⁺ experiments	430 433 436 437 438
 6.2.2. The Mg⁺ experiments 7. Time and frequency standards based on trapped and cooled ions 7.1. Microwave frequency standards 7.2. Optical frequency standards 7.2.1. Two-photon line in ²⁰¹Hg⁺ 7.2.2. Resonant Raman transition in Ba⁺ 7.2.3. Intercombination lines in group III ions References 	441 442 444 445 445 446 447
Course 4. Collisions in atomic vapors, by Paul R. Berman	45.
Introduction 1.1. Physical system and approximations	454 456
 Collision kernels and rates – qualitative General considerations Collision kernels and rates for populations Structure of the collision kernel Collision kernels and rates for coherences Collisional decay of ρ_{ij} for i ≠ j Summary 	457 457 459 460 464 466 467
 3. Collision kernels and rates – quantitative 3.1. Formal expressions for collision kernels and rates 3.2. Structure of the collision kernels 	468 468 470
 4. Collision kernels and rates – arbitrary active atom to perturber mass rational 4.1. Stationary perturber limit – review 4.2. Collision kernels and rates – formal expressions for arbitrary (m/m_p) 4.3. Collision kernel widths, collision rates and validity criteria – arbitration (m/m_p) 4.3.1. Populations 4.3.2. Coherences 	472 474
 5. Experimental methods for measuring collision kernels and rates 5.1. General considerations 5.2. Linear spectroscopy 5.3. Coherence spectroscopy of a 3-level system 5.4. Photon echo 5.5. Saturation spectroscopy of a 3-level system 5.6. Delayed saturation spectroscopy 5.7. Stimulated echo 	478 479 483 488 493 498 504
6. Summary References	509 512

xxx Contents

Seminar 5. Laser induced collisions in dense vapors by Luigi Moi	517
1. Introduction	518
Resonant excitation of dense alkali vapors	520
3. Conclusion	
	532
References	532
Seminar 6. Generation of coherent radiation in the VUV, by Jacques Lukasik	535
1. Introduction	530
2. Review of vacuum ultraviolet lasers	530
2.1. General considerations	530
2.2. Hydrogen laser 2.3. Excimer/exciplex laser	53° 538
3. Harmonic generation and sum frequency mixing in the vacuum ultraviolet	539
3.1. Major experimental achievements	54
3.2. Comparison with other sources	54
4. Perspectives for the soft X-ray and γ -ray lasers	54
4.1. Proposal for a 207 Å laser in lithium	54
4.2. Laser gain around 182 Å in carbon plasma 4.3. Nuclear bomb pumped X-ray laser at 14 Å	550 550
4.4. Prospects for a γ-ray laser	55
5. Applications of coherent vacuum ultraviolet radiation	552
6. Final comment	553
References	.55
HYSICS IN THE VUV AND X RAN	GE
Course 5. Application of many-body problems to atomic physics, by Göran Wendin	<i>55</i> .
1. Introduction	558
2. Qualitative discussion of electronic excitation spectra	563
2.1. The photoionization process in real space and time	564
2.2. A stationary state picture	560
2.3. When is the many-electron response particularly important?	569