· · · ·

CONTENTS

N	OTATION	xi
1.	THE TRANSITION STATE METHOD	
	1. The adiabatic approximation. Potential energy surfaces	1
	2. Basic assumptions of the transition state method. Deduction of a	7
	formula for the rate of an elementary process	,
	3. Over-barrier reflection and tunnel corrections	20
	4. The quantum partition functions and symmetry numbers	23
	5. The isotope effect	28
	6. The principle of detailed balance and the transition state method	34
2.	THE EXCHANGE OF VIBRATIONAL AND	
	TRANSLATIONAL ENERGY IN MOLECULAR	
	COLLISIONS	
	7. General observations on the exchange of energy in molecular collisions	41
	8. Model of a forced harmonic oscillator	52
	 Vibrational transitions between the lowest levels of diatomic molecules in non-degenerate electronic states 	58
	10. The vibrational relaxation of oxygen and nitrogen	78
	11. Strong coupling of the vibrational and translational motion	83
	12. Resonant exchange of vibrational energy	92
	13. Exchange of energy in the collisions of polyatomic molecules	96
3.	THE EXCHANGE OF ELECTRONIC, VIBRATIONAL, AND	(
	TRANSLATIONAL ENERGY IN MOLECULAR COLLISIONS	
	14. The classification of nonadiabatic transitions	99
	15. The linear model. The Landau-Zener formula	107
	16. Generalization of the linear model	117
	17. Model of non-linear terms	124
	18. Nonadiabatic processes in atomic collisions	132
	19. Nonadiabatic processes in the collisions of atoms with diatomic molecules	148
	20. Vibrational transitions between the lowest levels of a diatomic molecule	
	in a degenerate electronic state	166
	21. Vibrational relaxation of nitric oxide	175
4.	UNIMOLECULAR REACTIONS	
	22. The thermal decomposition and isomerization of molecules as unimolecular reactions	179
	23. Dependence of the rate constant on the pressure. The mechanism of	181
	strongly-activating collisions	
	24. The Slater model	193
	23. Kassel's model	208

CONTENTS

	26. The effect of anharmonicity on the reaction rate	217
	27. Nonadiabatic reactions	227
-	THE OT A TRADUCT ALL THEORY OF REACTIONS	
3.	THE STATISTICAL THEORY OF REACTIONS	
	28. The basic assumptions of the statistical theory	237
	29. Harmonic model of an active molecule	244
	30. An anharmonic model of an active molecule	253
	31. Statistical theory with regard for the conservation of angular	258
	The instance effect	271
	32. The application of the statistical theory to thermal reactions	2/1
	55. The application of the statistical theory to thermal reactions	274
6.	DIFFUSION THEORY OF REACTIONS	
	34. Diffusion in phase space	283
	35. Diffusion through energy states	294
	36. Relaxation and the transmission of particles across a potential barrier	299
	37. Tunnel transitions in a double potential well	305
	38. Random walks over the discrete energy levels	310
	39. Mechanism of activation and the non-equilibrium distribution function in	
	unimolecular reactions	315
7.	DISSOCIATION OF DIATOMIC MOLECULES AND THE	
	RECOMBINATION OF ATOMS	
	40. Equilibrium theory of decomposition and recombination	322
	41. The contribution of various degrees of freedom of a dissociating	328
	molecule to the decomposition rate constant	
	42. Variational theory of dissociation and recombination	334
	43. The vibrational relaxation of diatomic molecules	342
	44. Non-equilibrium theory of dissociation and recombination	350
	45. Connection between the rate constants of dissociation and recombination	360
	46. Thermal dissociation of oxygen	364
8	RIMOLECIILAR REACTIONS	
0.	47 Exchange as a bimolecular reaction	367
	48 The potential energy surfaces of bimolecular reactions	370
	49 Fauilibrium theory	386
	50 The statistical theory	391
	51 Theory of direct reactions	403
	52 Dynamics of exchange reactions	412
	53. Disturbance of the equilibrium distribution in bimolecular reactions	424
4 ا	PPENDIX PROBLEMS OF FLEMENTARY PROCESSES IN	
· · ·	THERMAL GAS REACTIONS	434
		774
RF	REFERENCES	
IN	INDEX	

x