

Table of Contents

r . L

\$7.

52

. .

. ₂8

.

<u>6</u>2

162

14

•

	1.	Intro	ducti	on	1
	2.	Class	ical	theory of HI collisions	3
		2.I.	Elas	tic scattering	3
	£2.		2.1	Classical deflection function and cross-section	3
			2.2	Heavy-ion interaction potentials	7
			2.3	Rainbow, glory, and spiral scattering	12
55 28			*	2.3.1 Rainbow scattering	12
	20 28			2.3.2 Glory scattering	13
				2.3.3 Spiral scattering (orbiting)	14
				2.3.4 Application to elastic heavy-ion scattering	14
			2.4	Limitations due to quantal effects and absorption	16
	122			2.4.1 Limitations due to quantal effects	16
	5 1 6			2.4.2 Limitations due to absorption	21
		2.II.	Deep	ly inelastic collisions	22
			2.5	Experimental situation	22
42		6.40	2.6	Phenomenological description. Friction	27
2			2.7	Microscopic derivations of frictional forces	29
01			2.8	Numerical calculations	31
8 8 8 8			2.9	Experimental cross-sections and deflection functions	37
a ²¹			2.10	Limitations due to fluctuations	39
3	61		Refe	rences to chapter 2	.40
	3.	Gross	prop	erties of HI reactions. Compound-nucleus formation	42
£		3.I.	Prop	erties of reaction channels. Qualitative features of	0
	22		cros	s-sections	42
	71 <u>4</u>		3.1	Channels, Q-values	42
3. K			3.2	Q-values at contact. Energy release in forming the	
9				compound nucleus	43
			3.3	Grazing collisions and reaction cross-sections	47
			3.4	Qualitative decomposition of the total cross-section	51

.

8

31

(1+1)

		3.5	Critica	al angular momentum and instability against	
			prompt	fission	54
		3.6	Prompt	fission and compound-nucleus formation	59
	3.II.	Leve	l densit	ies and the compound nucleus	61
		3.7	Nuclear	level densities	61
		3.8	Yrast]	evels	65
		3.9	Yrast 1	evels and compound-nucleus formation	69
		3.10	Experim	mental results on compound-nucleus formation.	
			Entranc	e channel effects	70
		Refe	rences t	o chapter 3	78
4.	Some	eleme	nts of n	uclear scattering theory	80
		4.1	Elastic	scattering	80
•		4.2	Inelast	ic processes	86
		Refe	rences t	o chapter 4	88
5.	Elast	ic sc	attering		89
		5.1	Semicla	ssical theory of elastic scattering	89
			5.1.1	Derivation of the semiclassical scattering amplitude	90
			5.1.2	Rainbow, glory, and spiral scattering	96
			5.1.3	Application and generalization of the	
		22		semiclassical approximation	99
		5.2	Optical	model for elastic scattering	105

•

-

15

	5.2.1	Parameters of the optical-model potential	
		and redundancies	105
	5.2.2	The elastic scattering of $16 + 16_0$	108
5.3	Sharp	cut-off diffraction model	114
	5.3.1	Qualitative considerations	115
	5.3.2	Review of Fresnel diffraction	116
	5.3.3	Coulomb scattering and Fresnel diffraction	119
	5.3.4	Frahn's diffraction diagram	124
	5.3.5	Frahn's derivation of Fresnel diffraction from	
		the strong absorption model	128

20

.

			5.3.6	Rainbow refraction versus Fresnel diffraction	130
	5.	.4	Smooth	cut-off model	131
			5.4.1	General treatment of the smooth cut-off model	133
			5.4.2	Strong absorption model	134
	- 5-	.5	Regge I	oles	137
			5.5.1	Definition and properties of Regge poles	137
			5.5.2	Diffraction model and Regge poles	144
			5.5.3	Identification of Regge poles	144
			5.5.4	Dynamical interpretation of Regge poles	146
	Re	efere	nces to	o chapter 5	149
	Coulomb	o exc	itatior		152
a.	6.	.1	Qualita	tive considerations	152
	6.	.2	First-c	order perturbation theory	155
			6.2.1	Electric excitation	156
		× 1	6.2.2	Discussion	158
			6.2.3	Symmetrization of cross-sections	162
			6.2.4	Survey of the approximations	162
	6.	.3	Higher-	order effects	163
			6.3.1	The coupled equations	164
		1	6.3.2	The reorientation effect	165
			6.3.3	Double E2 excitation	167
			6.3.4	Electric dipole polarization	168
			6.3.5	Illustrative picture of the mechanism of	
				multiple Coulomb excitation	169
	6.	.4	Quantur	n-mechanical corrections	171
			6.4.1	The coupled equations	171
			6.4.2	Discussion of the quantum-mechanical corrections	173
	6.	.5 1	Methods	of detecting Coulomb excitation	175
			6.5.1	Direct measurement of the spectrum of	
				scattered particles	175
			6.5.2	Detection of deexcitation gamma rays	176
	Re	efere	nces to	o chapter 6	177

5.00

6.

0

.

98 - C

VIII

.

- 65

7.	Inelastic	scattering and transfer reactions	178		
	7.1	Classical considerations	178		
	7.2	Semiclassical description			
	7.3	Coupled channels and DWBA	190		
		7.3.1 Coupled channels for inelastic scattering	190		
		7.3.2 Optical potential in the coupled-channels formalism	192		
		7.3.3 Distorted wave Born approximation (DWBA)	195		
		7.3.4 Alpha particle scattering from deformed nuclei	196		
		7.3.5 Generalization of the coupled-channels formalism			
		to transfer reactions	199		
		7.3.6 Elastic transfer	203		
		7.3.7 DWBA and recoil effects	214		
	7.4	Parametrized phase-shift model in the DWBA for inelastic			
		and transfer reactions (Smooth cut-off model and Regge-pole			
		model)	216		
		7.4.1 Smooth cut-off model	217		
		7.4.2 Regge-pole model	218		
	Refei	rences to chapter 7	220		
8.	Statistica	al theory			
	8.1	The statistical model	224		
4 <u>4</u>	8.2	Precompound decay	232		
		8.2.1 Experimental results	234		
		8.2.2 Pre-equilibrium models	234		
	8.3	Theoretical foundations	243		
	8.4	Transport theory of deeply inelastic collisions	244		
	Refer	ences to chapter 8	250		
9.	Atomic eff	ects in ion-atom collisions	252		
	9.1	Production of inner-shell vacancies	253		
	9,2	Molecular X-rays from quasi-atoms	256		
	9.3	Interior electron shells in super-heavy atoms	260		
	9.4	Production of positrons in overcritical fields	261		

References to chapter 9

Subject index

58

266

269

10

40 (1) 28

20 E

5 1

20 E

185