CONTENTS

INTRODUCTION .	• •	٠	•	٠	•	xiii
I. THE WAVE EQUATION						
1. The wave function .		•	•			1
2. Wave mechanics of steady b	eams of ele	octrons	•	•	•	2
3. Examples of wave functions	describing	steady b	eams of e	electrons		5
4. Beam of electrons in field-fre	e space					6
5. One-dimensional problems		•	•			7
6. Solution of the wave equation	n for an ele	ctron in a	slowly v	arying fi	eld.	9
7. Formulae for the current ; th	e conserva	tion of ch	narge			10
8. Problems in which $ \psi ^2$ varies	s with the	time	•	•		12
9. Wave packets		•		•		14
9.1. One-dimensional motion	n of a wa	ve packe	t in a h	omogene	ous	
medium		-	•	•		15
II. THE THEORY OF THE S	CATTERI	NG OF	A BEAM	I OF PA	AR-	
TICLES BY A CENTRE O	F FORCE					10
1. Calculation of scattered inter	nsity .	•	•	•		19
2. Connexion between the phas scattered particle	es η_n and t	he angul	er mome:	ntum of	the	25
3. Scattering by a potential hol	е.	•	•	•		28
3.1. Low-velocity limit of th	e cross-sec	tion .	•	•		29
3.2. Velocity variation of η_0	and of the	zero-orde	r partial o	cross-sect	tion	31
3.3. The higher order phases	and partia	al cross-se	ctions	•		35
4. Scattering by a uniform pote	ntial barri	er .		•	•	36
5. Scattering by an impenetrab	le sphere	•		٠		38
6. Scattering by an inverse cub	e law field		•	•		40
7. Dispersion formula for the se	attering c	ross-sectio	m.	•	•	41
-						
III. SCATTERING OF A BEA	M OF PA	RTICLES	S BY A	COULO	MB	
FIELD						45
I. Introduction	•				•	40
2. Solution of the wave equation	n ior scatt	ering by a	a Comon	io neio	•	40
3. The generalized hypergeome	LTIC SETIES	• • • • • • • • • • • • • •	·	• aulamh (e de la	43
4. The radial wave functions for	positive el	iergy stat	es m a U	outomo i	Tera	59
4.1. The bounded solution, I	'n ·		•	٠	•	52
4.2. The unbounded solution	A_n		•	•	•	59
4.3. Numerical calculation of	L_n and R	-n -	•	•	•	50
5. The penetrability of a Coulor	mb potent	al barrier	•••	•	•	55
5.1. The dispersion formula	with a Cou	liomo nelo	1 .	•	•	00
IV. THE SPIN OF THE ELEC	TRON					
1. The magnetic moment of an	atom .	•	•		•	57
2. Magnetic moment of the elec	etron .	•	•	•	•	61
3. The relativistic wave equation	on .	•	•		•	66
3.1. Treatment of equations	when vel	ocity of t	he electr	ons is c	om-	
parable with that of light		•			•	69

CO	N	T	E	N	T	S
_	_		_			_

3.2. Nature of an unpolarized beam 70 3.3. The magnetic moment of an atom according to Dirac's equation 72 4. The scattering of electrons by a centre of force 74 4.1. Polarization 76 4.2. The case of the Coulomb field 78 4.3. Comparison with experiment 83 5. The positron 85 5.1. The scattering of fast positrons by a Coulomb field 87 v. COLLISIONS BETWEEN TWO PARTICLES-NON-RELATI-VISTIC THEORY 1. Introduction 88 2. Interaction of two unlike particles. Non-relativistic theory without spin 88 3. Theory of the interaction between two similar particles 90 3.1. Proof that the wave functions describing systems containing two similar particles in a non-degenerate stationary state are either symmetrical or antisymmetrical in the coordinates of the particles 95 4. Collision of two identical particles without spin 96 4.1. Coulomb field 101 5. Collision between two identical particles with spin 102 6. Collisions between identical nuclei 105 VI. INHOMOGENEOUS DIFFERENTIAL EQUATIONS 1. Ordinary differential equations. The general solution 106 2. Solution satisfying boundary conditions 107 2.1. Integral equation for the phase 110 3. Partial differential equations 111 3.1. Asymptotic form of the solution 113 4. Solution of a certain equation 114 VII. SCATTERING BY A CENTRE OF FORCE-TREATMENT BY INTEGRAL EQUATION, AND MISCELLANEOUS THEOREMS 1. The Born approximation 116 1.1. Remarks about the scattering as given by the Born formula 118 2. Connexion between the Born formula and the exact formula for $f(\theta)$. 119 3. Relativistic correction 119 4. Classical limit of the quantum theory scattering formula 120 5. The range of validity of the Born and classical approximations 124 6. Summary of methods available for calculating the scattering by a central field 126 6.1. Approximation when the phase shift is small 126 6.2. Approximation when the phase shift is not small 127 6.3. Variation method 128 6.4. Numerical solution of the differential equation . 129 VIII. GENERAL THEORY OF ATOMIC COLLISIONS 1. Conservation theorems. Maximum cross-sections for given angular 133 momentum

2. The collisions of electrons with hydrogen atoms. Born's approximation 136

viii

CO	N	ΤЕ	N	TS
----	---	----	---	----

3.	Two-body collisions in general	138
4.	Rearrangement collisions	140
	4.1. Electron exchange	140
	4.2. Rearrangement collisions in general	142
	4.3. Effect of the exclusion principle on the scattering formulae .	143
5.	Approximate methods for slow collisions. The method of distorted	• • •
	waves	144
6.	Approximate methods for slow collisions. The case of strong coupling	146
	6.1. Exact resonance	146
	6.2. Inexact resonance	150
	6.3. Rearrangement collisions	153
7.	Approximate methods for slow collisions. The method of perturbed	159
_	stationary state wave functions	100
8.	The method of the collision complex	107
	8.1. The one-level formula	108
	8.11. Significance of the one-level formula	102
	8.12. Elastic scattering	163
	8.13. Case when the complex may break up in more than two ways	164
	8.14. One-level formula with unrestricted angular momenta	164
	8.2. Generalization to many resonance levels of the complex. Partial	105
	widths smaller than level separation	100
	8.21. Generalization of the one-body dispersion formula	100
	8.22. Variation of partial widths with velocity	108
	8.3. The case of overlapping levels .	169
	8.31. Statistical formula for level widths. The sticking probability	171
	8.32. Energy distribution of emitted particles	172
	8.4. The transition state method	173
9.	Summary of methods	177
10.	Collisions between two systems, one of which is initially at rest	177
IX.	THE COLLISIONS OF FAST ELECTRONS WITH ATOMS.	
_	ELASTIC SCATTERING—BORN'S APPROXIMATION	150
1.	Introductory. The experimental methods and results	179
	1.1. Experiments in which the aggregate of effects due to all types of	170
	collision are observed	179
	1.2. Experiments in which the different types of conision are in-	182
9	Flagtic contenting Born's first enpresemention	183
2. 9	Sectoring by hydrogen and holium	183
J.	Scattering by hydrogen and hendrin	195
	The colculation of ererg sections for complex stores	197
4.	A L Tras of the Thermon Formi fold High velocity encounters	100
	4.1. Use of the inomas-remnined. High-velocity encounters .	100
Э. с	Multiple sectoring	102
0.	Multiple scattering	190
X.	ELASTIC SCATTERING OF SLOW ELECTRONS BY ATOMS	
1.	The Ramsauer and Townsend effects	200
2.	The theory of the scattering of low-velocity electrons. Method of	
	partial cross-sections	204
3.	General application of the method of partial cross-sections .	206
	3.1. Condition for existence of a Ramsauer-Townsend effect	206

ix

CO	N	т	Е	N	т	s
----	---	---	---	---	---	---

1

x

	3.2. Explanation of other general features	•	206
4.	Quantitative application of method of partial cross-sections	•	209
5.	Electron exchange in elastic collisions	•	214
6.	Calculation of effect of electron exchange in elastic scattering	by	
	hydrogen and helium		215
	6.1. Numerical applications to elastic scattering		219
7.	The effect of polarization		220
XT.	THE AGENTO OOT I TOTONG OF EI FOTDONG WITH ATOMS		
АІ.	INELASTIC COLLISIONS OF ELECTRONS WITH ATOMS		004
1.	General formulae	•	224
	1.1. Introduction of momentum variables	•	225
2.	Calculation of differential cross sections for hydrogen and helf	um.	007
	Angular distributions of inelastically scattered electrons .	•	227
	2.1. Excitation of discrete levels	•	227
	2.2. Excitation of continuous levels. Ionization	٠	232
	2.21. Velocity distribution of ejected electrons .	٠	236
	2.3. Angular distribution of the aggregate of inelastically scatte	red	
	electrons		237
	2.31. Hydrogen atoms		237
	2.32. Generalization for complex atoms		240
3.	Total collision cross-sections		241
•••	3.1 Excitation of discrete optical levels		241
	3.9 Excitation of X-rays	-	243
	2.2. Excitation of X-lays		244
2	2.21 Tenjastien makehilita for high velocity impacts		945
	3.31. Ionization probability for high-velocity impacts .	•	410
	9.99 Guiden it also is the series of the series and with comparison t		947
	3.32. Comparison with classical theory and with experiment	•	247
,	3.32. Comparison with classical theory and with experiment 3.4. Distribution of various types of collisions for high-velo	city	247
,	3.32. Comparison with classical theory and with experiment 3.4. Distribution of various types of collisions for high-velo- impacts	city	247 248
, 4.	 3.32. Comparison with classical theory and with experiment 3.4. Distribution of various types of collisions for high-velocimpacts Calculation of the stopping power of matter for fast electrons 	city	247 248 248
4.	 3.32. Comparison with classical theory and with experiment 3.4. Distribution of various types of collisions for high-velocimpacts Calculation of the stopping power of matter for fast electrons 4.1. Hydrogen. Preliminary theorems 	city	247 248 248 248
4.	 3.32. Comparison with classical theory and with experiment 3.4. Distribution of various types of collisions for high-velouimpacts Calculation of the stopping power of matter for fast electrons 4.1. Hydrogen. Preliminary theorems 4.11. Generalized transition probabilities and oscillator streng 	city ths	247 248 248 248 248 248
, 4.	 3.32. Comparison with classical theory and with experiment 3.4. Distribution of various types of collisions for high-velouimpacts Calculation of the stopping power of matter for fast electrons 4.1. Hydrogen. Preliminary theorems 4.11. Generalized transition probabilities and oscillator streng 4.12. Summation theorem for generalized oscillator strengths 	city ths	247 248 248 248 248 248 249
4.	 3.32. Comparison with classical theory and with experiment 3.4. Distribution of various types of collisions for high-velouinpacts Calculation of the stopping power of matter for fast electrons 4.1. Hydrogen. Preliminary theorems 4.11. Generalized transition probabilities and oscillator streng 4.12. Summation theorem for generalized oscillator strengths 4.2. Calculation of the stopping-power of hydrogen . 	city ths	247 248 248 248 248 248 249 250
4 .	 3.32. Comparison with classical theory and with experiment 3.4. Distribution of various types of collisions for high-velocimpacts Calculation of the stopping power of matter for fast electrons 4.1. Hydrogen. Preliminary theorems 4.11. Generalized transition probabilities and oscillator streng 4.12. Summation theorem for generalized oscillator strengths 4.2. Calculation of the stopping-power of hydrogen . 4.3. Complex atoms 	city ths	247 248 248 248 248 248 249 250 252
4.	 3.32. Comparison with classical theory and with experiment 3.4. Distribution of various types of collisions for high-velouinpacts Calculation of the stopping power of matter for fast electrons 4.1. Hydrogen. Preliminary theorems 4.11. Generalized transition probabilities and oscillator streng 4.12. Summation theorem for generalized oscillator strengths 4.2. Calculation of the stopping-power of hydrogen . 4.3. Complex atoms 4.4. Relation to Bohr's classical formula—the method of imp 	city ths	247 248 248 248 248 248 249 250 252
4 .	 3.32. Comparison with classical theory and with experiment 3.4. Distribution of various types of collisions for high-velocimpacts Calculation of the stopping power of matter for fast electrons 4.1. Hydrogen. Preliminary theorems 4.11. Generalized transition probabilities and oscillator streng 4.12. Summation theorem for generalized oscillator strengths 4.2. Calculation of the stopping-power of hydrogen . 4.3. Complex atoms 4.4. Relation to Bohr's classical formula—the method of imparameters 	city ths	247 248 248 248 248 248 249 250 252 252
, 4.	 3.32. Comparison with classical theory and with experiment 3.4. Distribution of various types of collisions for high-velocimpacts Calculation of the stopping power of matter for fast electrons 4.1. Hydrogen. Preliminary theorems 4.11. Generalized transition probabilities and oscillator streng 4.12. Summation theorem for generalized oscillator strengths 4.2. Calculation of the stopping-power of hydrogen . 4.3. Complex atoms 4.4. Relation to Bohr's classical formula—the method of imp parameters 4.5. Comparison with experimental values . 	ths	247 248 248 248 248 248 249 250 252 252 252
4.	 3.32. Comparison with classical theory and with experiment 3.4. Distribution of various types of collisions for high-velouinpacts. Calculation of the stopping power of matter for fast electrons 4.1. Hydrogen. Preliminary theorems 4.11. Generalized transition probabilities and oscillator streng 4.12. Summation theorem for generalized oscillator strengths 4.2. Calculation of the stopping-power of hydrogen. 4.3. Complex atoms 4.4. Relation to Bohr's classical formula—the method of imparameters 4.5. Comparison with experimental values 4.6. Relative contribution of light and heavy collisions to stopping. 	ths	247 248 248 248 248 249 250 252 252 252 252
4.	 3.32. Comparison with classical theory and with experiment 3.4. Distribution of various types of collisions for high-velouinpacts Calculation of the stopping power of matter for fast electrons 4.1. Hydrogen. Preliminary theorems 4.11. Generalized transition probabilities and oscillator strengt 4.12. Summation theorem for generalized oscillator strengths 4.2. Calculation of the stopping-power of hydrogen. 4.3. Complex atoms 4.4. Relation to Bohr's classical formula—the method of imparameters 4.5. Comparison with experimental values 4.6. Relative contribution of light and heavy collisions to stopping-power 	ths bact	247 248 248 248 248 249 250 252 252 252 252 254 255
4 . 5.	 3.32. Comparison with classical theory and with experiment 3.4. Distribution of various types of collisions for high-velouinpacts Calculation of the stopping power of matter for fast electrons 4.1. Hydrogen. Preliminary theorems 4.11. Generalized transition probabilities and oscillator strengt 4.12. Summation theorem for generalized oscillator strengths 4.2. Calculation of the stopping-power of hydrogen. 4.3. Complex atoms 4.4. Relation to Bohr's classical formula—the method of imparameters 4.5. Comparison with experimental values 4.6. Relative contribution of light and heavy collisions to stopping-power 	city ths pact	 247 248 248 248 249 250 252 252 254 255 255
4 . 5.	 3.32. Comparison with classical theory and with experiment 3.4. Distribution of various types of collisions for high-velouinpacts Calculation of the stopping power of matter for fast electrons 4.1. Hydrogen. Preliminary theorems 4.11. Generalized transition probabilities and oscillator strengt 4.12. Summation theorem for generalized oscillator strengths 4.2. Calculation of the stopping-power of hydrogen . 4.3. Complex atoms 4.4. Relation to Bohr's classical formula—the method of imparameters 4.5. Comparison with experimental values . 4.6. Relative contribution of light and heavy collisions to stopping-power 	city ths pact	247 248 248 248 249 250 252 252 252 255 255 255 257
4 . 5.	 3.32. Comparison with classical theory and with experiment 3.4. Distribution of various types of collisions for high-velouinpacts Calculation of the stopping power of matter for fast electrons 4.1. Hydrogen. Preliminary theorems 4.11. Generalized transition probabilities and oscillator strengt 4.12. Summation theorem for generalized oscillator strengths 4.2. Calculation of the stopping-power of hydrogen . 4.3. Complex atoms 4.4. Relation to Bohr's classical formula—the method of imparameters 4.5. Comparison with experimental values . 4.6. Relative contribution of light and heavy collisions to stopping-power Inelastic collisions of slow electrons with atoms 5.1. Application of theory of collisions 5.2. Calculations for belium and comparison with experiment 	ths ing-	247 248 248 248 249 250 252 252 252 255 255 255 257 260
4 . 5.	 3.32. Comparison with classical theory and with experiment 3.4. Distribution of various types of collisions for high-velouimpacts. Calculation of the stopping power of matter for fast electrons 4.1. Hydrogen. Preliminary theorems 4.11. Generalized transition probabilities and oscillator strength 4.12. Summation theorem for generalized oscillator strengths 4.2. Calculation of the stopping-power of hydrogen. 4.3. Complex atoms 4.4. Relation to Bohr's classical formula—the method of imparameters 4.5. Comparison with experimental values 4.6. Relative contribution of light and heavy collisions to stopping-power Inelastic collisions of slow electrons with atoms 5.1. Application of theory of collisions 5.2. Calculations for helium and comparison with experiment 	ths ing-	247 248 248 248 249 250 252 252 252 254 255 255 255 257 260 262
4. 5.	 3.32. Comparison with classical theory and with experiment 3.4. Distribution of various types of collisions for high-velouinpacts Calculation of the stopping power of matter for fast electrons 4.1. Hydrogen. Preliminary theorems 4.11. Generalized transition probabilities and oscillator strengths 4.12. Summation theorem for generalized oscillator strengths 4.2. Calculation of the stopping-power of hydrogen. 4.3. Complex atoms 4.4. Relation to Bohr's classical formula—the method of imparameters 4.5. Comparison with experimental values 4.6. Relative contribution of light and heavy collisions to stopping-power Inelastic collisions of slow electrons with atoms 5.1. Application of theory of collisions 5.2. Calculations for helium and comparison with experiment 	ths	247 248 248 248 249 250 252 252 252 254 255 255 255 255 260 262 264
4 . 5 .	 3.32. Comparison with classical theory and with experiment 3.4. Distribution of various types of collisions for high-velocimpacts Calculation of the stopping power of matter for fast electrons 4.1. Hydrogen. Preliminary theorems 4.11. Generalized transition probabilities and oscillator strengths 4.12. Summation theorem for generalized oscillator strengths 4.2. Calculation of the stopping-power of hydrogen. 4.3. Complex atoms 4.4. Relation to Bohr's classical formula—the method of imparameters 4.5. Comparison with experimental values 4.6. Relative contribution of light and heavy collisions to stopping-power Inelastic collisions of slow electrons with atoms 5.1. Application of theory of collisions 5.2. Calculations for helium and comparison with experiment 5.3. Excitation of heavy atoms Summary 	ths	247 248 248 248 249 250 252 252 252 254 255 255 255 255 255 260 262 264
4 . 5.	 3.32. Comparison with classical theory and with experiment 3.4. Distribution of various types of collisions for high-velocimpacts Calculation of the stopping power of matter for fast electrons 4.1. Hydrogen. Preliminary theorems 4.11. Generalized transition probabilities and oscillator strengths 4.12. Summation theorem for generalized oscillator strengths 4.2. Calculation of the stopping-power of hydrogen. 4.3. Complex atoms 4.4. Relation to Bohr's classical formula—the method of imparameters 4.5. Comparison with experimental values 4.6. Relative contribution of light and heavy collisions to stopping-power Inelastic collisions of slow electrons with atoms 5.1. Application of theory of collisions 5.2. Calculations for helium and comparison with experiment 	ths	247 248 248 248 249 250 252 252 252 254 255 255 255 255 260 262 264
4. 5. 6. XII.	 3.32. Comparison with classical theory and with experiment 3.4. Distribution of various types of collisions for high-velouimpacts Calculation of the stopping power of matter for fast electrons 4.1. Hydrogen. Preliminary theorems 4.11. Generalized transition probabilities and oscillator strengths 4.12. Summation theorem for generalized oscillator strengths 4.2. Calculation of the stopping-power of hydrogen. 4.3. Complex atoms 4.4. Relation to Bohr's classical formula—the method of imparameters 4.5. Comparison with experimental values 4.6. Relative contribution of light and heavy collisions to stopping-power Inelastic collisions of slow electrons with atoms 5.1. Application of theory of collisions 5.2. Calculations for helium and comparison with experiment 5.3. Excitation of heavy atoms Summary THE COLLISIONS BETWEEN MASSIVE PARTICLES 	ths 	247 248 248 248 249 250 252 252 252 254 255 255 255 255 260 262 264
4. 5. 6. XII. 1.	 3.32. Comparison with classical theory and with experiment 3.4. Distribution of various types of collisions for high-velouimpacts Calculation of the stopping power of matter for fast electrons 4.1. Hydrogen. Preliminary theorems 4.11. Generalized transition probabilities and oscillator strengths 4.12. Summation theorem for generalized oscillator strengths 4.2. Calculation of the stopping-power of hydrogen. 4.3. Complex atoms 4.4. Relation to Bohr's classical formula—the method of imparameters 4.5. Comparison with experimental values 4.6. Relative contribution of light and heavy collisions to stopping-power Inelastic collisions of slow electrons with atoms 5.1. Application of theory of collisions 5.2. Calculations for helium and comparison with experiment 5.3. Excitation of heavy atoms Summary THE COLLISIONS BETWEEN MASSIVE PARTICLES 	ths	247 248 248 248 249 250 252 252 252 255 255 255 255 260 262 264 266 266
4. 5. 6. XII. 1.	 3.32. Comparison with classical theory and with experiment 3.4. Distribution of various types of collisions for high-velouimpacts Calculation of the stopping power of matter for fast electrons 4.1. Hydrogen. Preliminary theorems 4.11. Generalized transition probabilities and oscillator strengths 4.12. Summation theorem for generalized oscillator strengths 4.2. Calculation of the stopping-power of hydrogen. 4.3. Complex atoms 4.4. Relation to Bohr's classical formula—the method of imparameters 4.5. Comparison with experimental values 4.6. Relative contribution of light and heavy collisions to stoppi power Inelastic collisions of slow electrons with atoms 5.1. Application of theory of collisions 5.2. Calculations for helium and comparison with experiment 5.3. Excitation of heavy atoms Summary THE COLLISIONS BETWEEN MASSIVE PARTICLES Physical phenomena involved 1. Passage of fast massive particles through matter 	ths	247 248 248 248 249 250 252 252 252 255 255 255 255 260 262 264 266 266 266
4. 5. 6. XII. 1.	 3.32. Comparison with classical theory and with experiment 3.4. Distribution of various types of collisions for high-velouimpacts Calculation of the stopping power of matter for fast electrons 4.1. Hydrogen. Preliminary theorems 4.11. Generalized transition probabilities and oscillator strengths 4.12. Summation theorem for generalized oscillator strengths 4.2. Calculation of the stopping-power of hydrogen. 4.3. Complex atoms 4.4. Relation to Bohr's classical formula—the method of imparameters 4.5. Comparison with experimental values 4.6. Relative contribution of light and heavy collisions to stoppin power Inelastic collisions of slow electrons with atoms 5.1. Application of theory of collisions 5.2. Calculations for helium and comparison with experiment 5.3. Excitation of heavy atoms Summary THE COLLISIONS BETWEEN MASSIVE PARTICLES Physical phenomena involved 1. Passage of fast massive particles through matter 1.2. Capture or loss of charge on impact 	ths	247 248 248 248 249 250 252 252 252 255 255 255 255 255 260 262 264 266 267 267

		1.4. Elastic collisions of gas atoms	268
		1.5. Mobilities of positive ions in gases	268
		1.6. Excitation of inner molecular motions	269
		1.7. Chemical reactions in general	269
	2.	Fast collisions of massive particles	270
		2.1. The stopping-power of matter for fast positive ions .	270
		2.2. The capture of electrons by fast positive ions	273
		2.3. The stopping-power of matter for fission fragments	275
		2.4. Multiple scattering	277
	3.	Slow collisions of heavy particles	278
		3.1. Elastic collisions of gas atoms	278
		3.2. Transfer of excitation and of charge in slow collisions .	281
		3.21. Quenching of mercury resonance radiation .	281
		3.22. Excitation of sodium by excited mercury atoms .	282
		3.23. The absorption of positive ions-'Umladung'	282
		3.3. Theory of resonance effects	284
		3.4. Passage of positive ions through gases	288
		3.5. Exchange of energy between translational motion and molecular	
		vibration and rotation	292
		3.6. Chemical reaction rates	294
x 1	ттт	NUCLEAR COLLISION PHENOMENA	
23.	1	The simplest pucker collisions and the law of force between	
	1.	nucleons	297
		1.1. The elastic collisions of neutrons and protons	297
		1.2. The scattering of protons by protons	302
		1.3. The electic scattering of neutrons and protons by deuterons	305
	9	Many body resonance phenomena in nuclear collisions	306
	۵.	9.1 Theoretical lavel specing in compound nuclei	307
		2.1. Theorem at level spacing in compound hadrer	
		slow neutrons	308
		2.21. Application of the one-level formula	309
		2.22. Experimental results	311
		2.3 Resonance nhenomene involving light nuclei	315
		2.31 Besonant collisions with medium energy neutrons	315
		2.39 Redictive conture of protons	315
		2.32. Resonance disintegration by a particles	318
		2.33. Rummany of data on level spacings and level widths for	010
		light nuclei	319
		2.35. Elastic scattering of charged particles by light nuclei	319
		2.36. Particle emission from light nuclei after capture of slow	
		neutrons	324
	3.	Effect of molecular binding on the scattering of slow neutrons	325
		3.1. The pseudo-potential	325
		3.11. Derivation of the pseudo-potential	326
		3.12. Inclusion of spin coupling in the pseudo-potential	328
		3.2. Applications of the pseudo-potential	329
		3.21. Collisions with an isotropic vibrator	329
		3.22. Collisions of slow neutrons with molecular hydrogen and	
		deuterium	331

CONT	Е	N	т	s
------	---	---	---	---

.

	3.23. Interference effects—the sign of the scattered amplitu	de .	334
4.	Magnetic scattering of slow neutrons	•	336
5.	Collisions of fast particles with medium to heavy nuclei .	•	340
6.	Nuclear fission	•	344
	6.1. Resonant radiative capture		346
	6.2. Slow neutron fission	•	347
	6.3. Theoretical estimate of fission width	•	348
	6.4. Fast neutron fission	•	348
XIV	. TRANSITION PROBABILITIES BY METHOD OF VARIA	FION	
	OF PARAMETERS		
1.	Introduction	•	351
2.	Excitation of an atom by a perturbation which is a function o	f the	
	time	•	351
	2.1. Ionization of an atom by a perturbation which is a function	on of	
•	the time	٠	303 970
3.	Transitions due to a perturbing function periodic in the time	•	300
	3.1. Ionization of a hydrogen atom by a light wave	· · ·	300
4.	Transitions caused by a perturbation which is not a function of	i the	360
	41 Final and initial states unquantized Scattering of a here	m of	000
	electrons by a centre of force		360
	4.2. Initial state quantized, final state unquantized		361
	The Internet States quantities, inter States and and and a states of the		
xv.	RELATIVISTIC TWO-BODY PROBLEMS—RADIATION	,	
1.	Relativistic quantum mechanics. Use of retarded potentials		362
2.	Relativistic treatment of collision problems .		365
3.	Collision between two free electrons		368
4.	Pair production by fast particles		369
5.	Radiationless annihilation of positrons	•	371
6.	Collision of a positron and a free electron		371
7.	Collision of a meson with an electron		372
8.	Scattering of vector mesons by a static field		373
9.	Derivation of radiation formulae by Born's collision method	• •	374
10.	Influence of radiative forces on nuclear scattering		379
	· · · · · · · · · · · · · · · · · · ·		0.01
	AUTHOR INDEX	•	381
	SUBJECT INDEX		385
	DODGEOT INDEX · · · · · · · ·	•	000

xii