Chapter I

INTRODUCTION

1.	GENERAL REMARKS	page 1
2.	INTRODUCTION TO LINE SPECTRA	2
	a. Characteristics of Line Spectra b. Energy Level Diagrams	2 8
	c. Metastable States	10
	d. Notion of Mean Life of an Excited State	10
3.	REMARKS ON FLUORESCENCE	11
4.	QUALITATIVE INVESTIGATIONS OF RESONANCE	
	RADIATION AND LINE FLUORESCENCE	14
	a. Resonance Radiation	14
	b. Resonance Radiation and Line Fluorescence	16
5.	Sources for Exciting Resonance Radiation	20
	a. Arcs without Foreign Gas	21
	b. Arcs with Stationary Foreign Gas	22
	c. Arcs with Circulating Foreign Gas	25
6. [`]	RESONANCE LAMPS	28
7.	RESONANCE RADIATION AND SPECULAR REFLEC-	
	TION IN MERCURY VAPOUR	31
8.	Hyperfine Structure of Line Spectra	34
9.	Investigations on the Hyperfine Structure of Resonance Radiation	39

Chapter Π

PHYSICAL AND CHEMICAL EFFECTS CON-NECTED WITH RESONANCE RADIATION

1.	STEPWISE RADIATION	page	44
	a. Mercury		44
	b. Effect of Admixture of Foreign Gases		47
	c. The Appearance of the Forbidden Line 2656 $(6^{1}S_{0}-6^{3}P_{0})$	1	52
	d. The Hyperfine Structure of Stepwise Radiation		52
	e. Cadmium and Zinc		54
2.	PRODUCTION OF SPECTRA BY COLLISION WITH	E I	
	Excited Atoms: Sensitized Fluorescence		56
	a. The Principle of Microscopic Reversibility		56
	b. Efficiency of Collisions of the Second Kind between Atoms	l I	
	and Electrons		57
	c. Collisions of the Second Kind between Two Atoms		59 59
	d. Sensitized Fluorescence e. Effect of Metastable Atoms		59 65
	e. Effect of Metastable Atomsf. Efficiency of Collisions of the Second Kind between Atoms	-	66
	g. Conservation of Spin Angular Momentum in Collisions of		00
	the Second Kind		69
3.	INTERACTION OF EXCITED ATOMS WITH MOLE	-	
	CULES. CHEMICAL REACTIONS TAKING PLACE IN	ৰ	
	THE PRESENCE OF OPTICALLY EXCITED ATOMS	;	
	SENSITIZED BAND FLUORESCENCE		71
	a. Introduction		71
	b. Reactions taking place in the Presence of Excited Mercury Atoms	i	71
	c. The Mechanism of the Activation of Hydrogen by Excited	1	
	Mercury Atoms		76
	d. Reactions involving Hydrogen		81 82
	e. The Sensitized Formation of Ozone		82 83
	f. The Sensitized Decomposition of Ammonia g. Other Decompositions sensitized by Excited Mercury		60
	g. Other Decompositions sensitized by Excited Mercury Atoms	(85
	 Reactions sensitized by other Metallic Vapours activated by the Absorption of Resonance Radiation 	1	86
4.	BANDS CONNECTED WITH RESONANCE LINES		87
	a. Mercury-Rare Gas Bands		87
	b. Continua apparently associated with Resonance Lines		88

Chapter III

ABSORPTION LINES AND MEASURE-MENTS OF THE LIFETIME OF THE RESONANCE STATE

1.	GENERAL PROPERTIES OF ABSORPTION LINES	page 92
	a. The Notion of an Absorption Line	92
	b. The Einstein Theory of Radiation	93
	c. The Relation between <i>f</i> -value and Lifetime	96
2.	THE ABSORPTION COEFFICIENT OF A GAS	97
	a. Expression for the Absorption Coefficient	97
	b. Characteristics of an Absorption Line with a Smal Natural Damping Ratio	1 101
	c. The Central Region of the Line	102
	d. The Edges of the Line	103
3.	Emission and Diffusion of Resonance Radia	-
	TION	106
	a. Emission Characteristics of a Resonance Lamp	106
	b. Methods of Measuring Lifetime	110
	c. Resonance Lamp with Electrical Cut-Off	110
	d. Resonance Lamp with Optical Cut-Off	111
	e. Atomic Ray Optically Excited	114
	f. Canal Ray	115
	g. Absolute Intensity of a Resonance Line	115
4.	Absorption within and at the Edges of A	L
	Resonance Line	116
	a. Area under the Absorption Coefficient	116
	b. Absorption Coefficient at the Centre of a Resonance Line	•
	c. Method of Ladenburg and Reiche	118
	d. Method in which $E_{\nu} = C \exp - \left(\frac{\omega}{a}\right)^2$	121
	e. Measurements on Simple Lines	123
	f. Absorption of a Number of Separate Simple Lines of Different Intensities	f 124
	g. Absorption of a Line with Overlapping Components	126
	h. Absorption of a Gas in a Magnetic Field	127
	i. Absorption Coefficient at the Edges of a Resonance Line	
	j. Total Energy Absorbed from a Continuous Spectrum by a Resonance Line that is not Completely Resolved	130

i

5.	MAGNETO-ROTATION AT THE EDGES OF A RESO-	
	NANCE LINE pag	e 133
	a. Magneto-Rotation at the Edges of a Resolved Resonance Line	133
	b. Magneto-Rotation and Absorption of a Resonance Line that is not Completely Resolved	135
6.	DISPERSION AT THE EDGES OF A RESONANCE LINE	139
	a. General Dispersion Formula	139
	b. Normal Dispersion of an Unexcited Gas very far from the Absorption Lines	140
	c. Anomalous Dispersion of an Unexcited Gas at the Edges of a Resonance Line	141
	d. Anomalous Dispersion of a Strongly Excited Gas at the Edges of the Absorption Lines λ_{kj}	144
7.	TABLES OF LIFETIMES AND DISCUSSION	145
	a. Summary of Methods of Measuring Lifetime and Tables of Lifetimes	145
	b. Discussion of Tables	146
	c. Electron Excitation Functions	149
	d. The Pauli-Houston Formula	150
	e. Higher Series Members of the Alkalies	151

Chapter IV

COLLISION PROCESSES INVOLVING EXCITED ATOMS

1. TYPES OF COLLISION PROCESSES	194
a. The Meaning of "Collision"	154
b. The Meaning of "Effective Cross-Section"	155
c. Collisions of the Second Kind	156
d. Perturbing Collisions	156
2. Classical Theory of Lorentz Broadening of an Absorption Line	158
a. The Phenomenon of Lorentz Broadening	158
b. The Simple Lorentz Theory	159
c. Combination of Lorentz, Natural, and Doppler Broadening	160

xii

	CONTENTS	xiii
į	3. Experiments on Lorentz Broadening page	162
	a. Photographic Measurements	162
	b. Measurements involving Magneto-Rotation	164
	c. Experiments on the Absorption of Resonance Radiation	165
	d. Evaluation of Effective Cross-Sections for Lorentz	
	Broadening	170
	e. Lorentz Broadening in a Sodium Flame f. The Shift of the Absorption Line	170 174
	g. The Asymmetry in Broadening	174
3	4. QUANTUM THEORY OF LORENTZ BROADENING	175
	a. Preliminary Theories	175
	b. Weisskopf's Theory	177
	c. Lenz's Theory	179
ł	5. Holtsmark Broadening	183
ł	6. Early Measurements of the Quenching of	
	RESONANCE RADIATION	187
	a. Quenching of Resonance Radiation by Foreign Gases	187
	b. Experiments of Stuart with Mercury	188
	c. Experiments with Sodium and Cadmium	189
	d. Difficulty of interpreting Early Experiments	190
i i	7. THEORY OF THE QUENCHING CURVE FROM AN	
	IDEAL RESONANCE LAMP	191
	a. The Stern-Volmer Formula	191
	b. Effect of Lorentz Broadening on Quenching	193
1	8. RADIATION DIFFUSION AND QUENCHING	196
	a. Milne's Theory	196
	b. Use of Milne's Theory to study Quenching	197
	c. Equivalent Opacity at Low Pressure	200
	d. Derivation of a Theoretical Quenching Curve	201
	e. Experimental Determinations of Quenching Cross-Sections	202
9	9. Collisions of Excited Atoms produced by	
	Optical Dissociation	204
	a. The Optical Dissociation of NaI	204
	b. Experimental Results	205
	c. Evaluation of Effective Cross-Sections	206
10	0. Other Collision Processes	213
	a. Collisions involving the Sodium Transition ${}^{2}P_{\frac{1}{2},\frac{3}{2}} \rightarrow {}^{2}P_{\frac{3}{2},\frac{1}{2}}$	213
	b. Collisions connected with Photo-ionization	215
	c. Collisions involving the Enhancement of Spark Lines	217

11.	THEORETICAL INTERPRETATION OF QUENCHING	Ģ
	Collisions	<i>page</i> 218
	a. General Principles	218
	b. Enhancement of Copper and Aluminium Ionic Levels	220
	c. Energy Interchange with Molecules	221
	d. Collisions with Excited Mercury Atoms	223
	e. Collisions with Excited Cadmium Atoms	225
	f. Collisions with Excited Sodium Atoms	226
	g. Collisions with Excited Thallium Atoms	228
12.	RAPIDITY OF ESCAPE OF DIFFUSED RESONANC	E
	RADIATION FROM A GAS	228
	a. Experiments with Mercury Vapour at Low Pressures	228
	b. Milne's Theory	230
	c. Experiments with Mercury Vapour at Higher Pressures	232
	d. Equivalent Opacity at High Pressure	233
13.	DIFFUSION AND COLLISIONS OF METASTABLE	E
	Atoms	236
	a. Early Work	236
	b. Theory of Measurement with Inert Gases	237
	c. Experimental Results with Neon, Argon, and Helium	240
	d. Theoretical Interpretation of Results with Inert Gases	245
	e. Methods of studying Metastable Mercury Atoms i Nitrogen	n 250
	f. Results and their Interpretation with Metastable Mercur Atoms in Nitrogen	у 252
	g. Metastable Mercury Atoms in Mercury Vapour	253
	h. The Simultaneous Production and Destruction of Meta	- 254

Chapter V

THE POLARIZATION OF RESONANCE RADIATION

1.	INTRODUCTION	258
2.	General Description of Apparatus for Polarization Work	258
3.	HANLE'S EXPERIMENTS ON MERCUBY VAPOUR	262

xiv

	CONTENTS	xv
4.	THEORY OF HANLE'S EXPERIMENTS page	264
	a. Classical Theory	264
	b. Quantum Theory of Polarization and the Zeeman Effect	267
5.	Experimental Verification of Magnetic	
	Depolarization and Angle of Maximum	
	POLARIZATION IN THE CASE OF MERCUBY	270
6.	POLARIZATION OF SODIUM RESONANCE RADIA-	
	tion: Breakdown of Classical Theory	272
	a. Experimental Results on the Polarization of Sodium Resonance Radiation	272
	The Zeeman Levels for Sodium; Van Vleck's Formulas for Polarization	272
	c. Further Comparison of Experiment with Theory	276
7.	POLARIZATION OF LINES OF OTHER ELEMENTS:	
••	Mean Lives of Several Excited States	278
	a. Resonance Lines	278
	b. Line Fluorescence	280
8.	EFFECT OF HYPERFINE STRUCTURE ON THE	
	POLARIZATION OF RESONANCE RADIATION	283
	a. Detailed Experimental Investigation of the Polarization of Mercury Resonance Radiation	283
	b. Theory of the Effect of Hyperfine Structure on the Polarization of Resonance Radiation	285
	c. Theory of the Effect of Hyperfine Structure on the Polarization of Line Fluorescence	290
	d. Comparison of Experiment with Present Theory of Polarization	291
	e. Effect of Hyperfine Structure on Magnetic Depolarization and the Angle of Maximum Polarization	296
247	f. Effect of Large Magnetic Fields; Paschen-Back Effect of Hyperfine Structure	301
9.	STEPWISE RADIATION	304
	a. Polarization of Stepwise Radiation	304
	b. Mean Life of the $7^{3}S_{1}$ State of Mercury	307
10.	DEPOLARIZATION BY COLLISION	308
11.	EFFECT OF ELECTRIC FIELDS ON RESONANCE	
	RADIATION	312
	 a. Measurements on Frequency (Stark Effect) b. Measurements on Polarization 	312 314
	o. measurements on rotanzation	UIT

APPENDIX

I. Absorption Coefficient of a Gas	page 319
II. Value of $\frac{a}{\pi} \int_{-\infty}^{\infty} \frac{e^{-y^2} dy}{a^2 + (\omega - y)^2}$ for small values of a	321
III. Line Absorption A_{L}	322
IV. The Absorption A_a	323
V. The Function S	324
VI. The Absorption $A'_{knl'}$	324
VII. Kuhn's Theory of Magneto-Rotation	325
VIII. Effect of Hyperfine Structure on the Value of χ_{ν}	327
IX. Value of $\frac{a'}{\pi} \int_{-\infty}^{\infty} \frac{e^{-y^2} dy}{a'^2 + (\omega - y)^3}$ for large values of a'	328
X. Diffused Transmitted Resonance Radiation	330
XI. Samson's Equivalent Opacity	330
XII. Kenty's Equivalent Opacity	331
XIII. Polarization of Resonance Radiation excited by Unpolari Light	zed 331
INDEX	335