CONTENTS

CHAPTER 1. Classsical theory of elastic scattering

1.	Introduction				1
2.	Scattering by a monotonic potential	•	•		3
3.	The inverse problem				10
4.	The interaction potential between atomic systems		•		18
	4.1. The Born-Oppenheimer separation				18
	4.2. Variational estimates of $V_{il}(R)$. The Heitler-London model for H ₂	•			22
	4.3. The interaction at large R		•		27
	4.4. Estimates of polarizabilities and Van der Waals constants		•		33
	4.5. Semi-empirical forms for $V(R)$		•	•	37
5.	The classical description of elastic scattering	•		•	38
6.	Classical analysis of the mobility of atomic ions in atomic gases		•	•	42
R	eferences				46

CHAPTER 2. Semi-classical theory of elastic scattering

The semi-classical approximation		•	48
Semi-classical theory of small angle scattering		•	51
Semi-classical scattering outside the small angle region			53
The semi-classical theory of the rainbow effect			57
Experimental studies of the rainbow effect			60
The semi-classical approximation to the total elastic cross section	٠	•	62
Velocity dependent oscillations in the total cross section		•	68
Mobilities of atomic ions in their parent gases			72
ppendix 2.1. The semi-classical (JWKB) approximation to the phase shifts			76
eferences			82
	The semi-classical approximation	The semi-classical approximation	The semi-classical approximation

CHAPTER 3. Classical models of inelastic and rearrangement processes

1.	Introduction	٠	•		•	•		•		84
2.	The energy transfer cross section	•			•		×			85
3.	The Thomson approximation		•	•.					•	88
4.	The classical approximation for ionization									91
5.	Exact classical models		•	•	•					96
6.	Classical binary encounter treatments of capture).					•			99
A	opendix 3.1. The classical electron distribution		•			•		•		105
Re	eferences									107

CONTENTS

CHAPTER 4. Impact parameter methods for electronic transitions

1.	Introduction to the impact parameter method	•	•						•	•	108
2.	Elementary treatment of direct excitation.										111
3.	Applications of the 1st order method										117
4.	The distortion approximation										123
5.	A second order distortion approximation.						•				128
6.	Approximations to the I.P.B. cross section .		•							•	130
7.	Extension of the I.P.B. approximation to rear	range	mer	t co	llisio	ns					135
8.	A variational principle and the two-state appro	oxim	atio	n.						•	141
9.	Applications of the two-state approximation.									•	144
10.	Atomic eigenfunction expansions including ele	ctror	i tra	nsla	tion	fact	ors		2		155
11.	Further applications of eigenfunction expansion	ons	•			,					162
12.	Expansions in molecular eigenfunctions							•			171
13.	Collisions involving intersections of potential	ener	gy	curv	es ("	curv	ve-ci	ross	ing	")	178
14.	Detailed balancing and unitarity in truncated	d set	app	roxi	mati	ons					192
15.	Inclusion of continuum intermediate states: th	e clo	sure	me	thod					•	195
16.	The continuum distorted wave method					•				÷	199
17.	Expansions not involving atomic eigenstates .					•					202
Ap	pendix 4.1. Equivalence of the wave and impa	ct pa	ram	eter	treat	tme	nts				206
Ap	pendix 4.2. Cheshire's identities								•		210
Ap	pendix 4.3. Matrix elements in the electron cap	pture	pro	blen	n.						212
Ref	erences										216

CHAPTER 5. The quantum theory of scattering by a potential

1.	The formal theory of potential scattering .	8												220
2.	The method of partial waves	ŝ					•		•			•	•	228
	2.1. Integral equations for the radial function	on	s.			•	•				÷	•		231
3.	The convergence of the Born series				•							•	÷	234
•	3.1. Application to potential scattering .				•							•		237
4.	Coulomb scattering	ж. :					•			•				239
	4.1. The three-dimensional Coulomb functi	or	s.		•						• 2		•	239
	4.2. The radial Coulomb functions				•	•						•	•	243
	4.3. Modified Coulomb potentials and the	Co	ulo	mb	G	ree	n's	fun	ctic	n				246
	4.4. The Coulomb T matrix				•		•	•	4			•		251
5.	Levinson's theorem				•	-	•	•				•		255
6.	Collisions between two particles				•			•		•	•	•	•	259
A	opendix 5.1. A theorem on iterative processe	es						•		•	•		•	260
Re	oferences						•	•		•	•		•	264

CHAPTER 6. The formal theory of scattering

1.	Introduction		•			•										•		•		•	266
2.	The interaction	pictu	Ire								•		•		•		•	•	•	•	267
3.	The S matrix					•	÷			÷			÷	•			٠		•	•	269
4.	Transition prob	abilit	y fo	or d	irec	t cc	ollis	ion	s			•				÷	•				273
5.	Rearrangement	collis	sion	s.				•		2					•	• -	•	٠	•	•	275
6.	The Born series	s.	•											•				•		•	279
7.	The distorted w	vave f	orm	ula	tion	L			•						•						286
8.	The impulse ap	proxi	mat	ion										•	•	•	•			•	292
	8.1. The impu	lse ap	рго	xin	natio	on í	or	a si	mp	le n	nod	el		•	•		•	•			292

VIII

.

CONTENTS

8.2. H	Formal	deri	vati	on	•				•		-		•	•	•				294
8.3. 1	he exte	ende	d in	npu	lse	app	oro	(im	atio	n.			•		•	•			299
9. The F	addeev	equ	atic	ons			•					•	-		•		•		301
Reference	es .							•			•	٠	•		•		•	٠	305

CHAPTER 7. Excitation and ionization

1.	Introduction	•			•	•	307
2.	The Born approximation	•				•	310
	2.1. The Bethe approximation		•		•		313
	2.2. Excitation of atomic hydrogen	•					317
	2.3. Ionization of atomic hydrogen	•	•				322
	2.4. Excitation of helium		•			•	324
	2.5. Ionization of atoms other than hydrogen					•	332
	2.6. Scaling laws in the Born approximation		•			•	339
	2.7. Atom-atom collisions		•	•	•		341
3.	The second Born approximation		•				343
4.	The Vainshtein, Presnyakov and Sobelman approximation		•				347
5.	The impulse approximation		•			•	354
	5.1. A peaking approximation		•			•	357
	5.2. Calculations without the peaking approximation		•	•		•	361
6.	Eigenfunction expansions		•	•		•	361
A	ppendix 7.1. The evaluation of integrals containing Coulomb func	tion	S			•	364
R	eferences						370

CHAPTER 8. Electron capture

1.	Introduction		•					•								373
2.	The OBK approximation															375
3.	The first Born approximation								•							381
	3.1. Hydrogenic targets	•						÷								382
	3.2. Many-electron targets		•						•				•			387
	3.3. The high-energy limit									•	•					392
4.	The second Born approximation									•			•	÷		395
5.	Distorted wave approximations .															402
6.	The impulse approximation															408
	6.1. Atomic hydrogen target .									•						408
	6.2. Helium target									•			٠.		÷	414
	6.3. The high-energy limit		•										٠			416
7.	Molecular eigenfunction expansions	5								•		•				419
8.	Atomic eigenfunction expansions												•			427
A	ppendix 8.1. The evaluation of $I(V_1)$	2)														429
R	eferences	•	•	•	•	•	•	•	•	•	•	•	•	•	•	431
																424
A	uthor index	٠	•	•	•	•	•	•	·	·		•	•	•	٠	434
Sr	biect index		100							•			•			440