•

Part I

	1	HISTORICAL	INT	RODUC	TIO	N-THE	PRODUCTION	
			OF	CATHO	DE	RAYS		
1.1	1	Historical notes						

1.2	Electron emission	6
1.3	Acceleration of electrons	7

3

2 ELECTRON MOTION

2.1	The Lorentz equation	10
2.2	Electron energy and electron momentum	11
2.3	The cyclotron frequency	12
2.4	Electrostatic deflection	13
2.5	Magnetic deflection	14
2.6	Parallel electrostatic and magnetic fields: the parabola method	16
2.7	Crossed electrostatic and magnetic fields: the cycloidal paths	17
2.8	Torque and angular momentum of a moving electron	21
2.9	Electron flow in the electrostatic field between coaxial cylinder electrodes	22
2.10	Busch's theorem for electron motion in fields of axial symmetry	23
2.11	Electron flow in the magnetron field	24
2.12	Electron motion in a coulomb field	26
2.13	Electron scattering by nuclei	28
2.14	The fundamental Bohr orbit	30
2.15	Precession of an electron orbit in a magnetic field: Larmor's theorem	32
2.16	Reflection of the electron by a magnetic field: the magnetic bottle	35

3 ELECTRON OPTICS

3.1	Optical methods for the study of electron trajectories	41
3.2	The refractive index in an electrostatic field	41
3.3	Electrolytic field plotting	43
3.4	The aperture lens	45
3.5	Some practical electrostatic electron lenses	47
3.6	The thin electrostatic lens formula	48
3.7	Focusing properties of a uniform magnetic field	50
3.8	Magnetic electron lenses	51
3.9	Ray tracing through magnetic lenses	54
3.10	Maximum current density in a spot of focused rays	56
3.11	Focusing deflection and electron beam spectrometry	58
3.12	The electron microscope	61
3.13	Quadrupole lenses	63

4 ELECTRONIC SPACE CHARGE AND THE FLOW OF ELECTRONS

4.1	The electronic space charge as an ideal gas	70
4.2	The Maxwellian distribution of electron velocities	71
4.3	Plane diode currents in the retardation region	74
4.4	Space charge flow with negligible emission velocities and the three-halves power law	76
4.5	Space charge flow with initial electron velocities	81
4.6	Space charge spreading of electron beams	83
4.7	Rectilinear flow in space charge loaded beams	86
4.8	Fluctuations in the flow	87
4.9	Shot noise	89
4.10	The collective description of electron interactions	93
	5 THE DETECTION OF CATHODE RAYS	
5.1	The Faraday cage as an electron collector	101
5.2	The ionization chamber	102
5.3	Geiger counters	104

106

5.4 Cloud chambers

5.5	Solid state counters	107
5.6	Photographic registration of electrons	108
5.7	Electron multipliers	108
5.8	Luminescent targets	110
5.9	Scintillation counters	112

Part II

6 THE CHARGE OF THE ELECTRON

6.1	Determination of e from electrolytic measurements and	
	from absolute measurements of X-ray wave-lengths	119
6.2	Cloud methods	122
6.3	Millikan's oil-drop method	123
6.4	Determination of the electron charge from the shot	
	effect	125

7 THE CHARGE TO MASS RATIO (e/m)of the electron

7.1	Early e/m measurements and the discovery of the	
	electron	133
7.2	Various later e/m measurements with static fields	137
7.3	e/m determinations by resonance methods	138
7.4	e/m by comparison of the electron cyclotron frequency with the nuclear resonance frequency of the proton	142
7.5		144
7.6	e/m from the Faraday constant and from the Rydberg constant of light atoms	145
8	THE ELECTRON MASS AND ITS RELATIVISTIC CHAN	GE
8.1	Methods for the determination of m	148
8.2	Experimental investigations on the change of the mass	
	of the electron with its velocity	149
8.3	Mass increase and relativity theory	153
8.4	Longitudinal and transverse acceleration of a moving	
	electron	155

8.5	Derivation of some practically important relativistic	
	relations	156
8.6	Mass increase in electron accelerators	159
8.7	The electromagnetic nature of the electron mass. The classical electron radius	161
8.8	Electron-positron pairs. Mass determination from the annihilation radiation	164
8.9	Interaction of the electron with the radiative field	166
8.10	The Lamb shift	167
	9 THE WAVE NATURE OF THE ELECTRON	
9.1	de Broglie waves	172
9.2	Diffraction of slow electrons at a crystal surface	175
9.3	Diffraction of electrons by space lattices of crystals. The refractive index for the de Broglie waves	177
9.4	Electron diffraction by ruled gratings	182
9.5	Electron interference: the 'bi-prism' experiment	184
9.6	Fresnel diffraction of electron waves	189
9.7	Representation of an electron beam by a wave function	192
9.8	Wave groups in an electron beam and their length of coherence	194
9.9	The single electron as a wave group and the uncer- tainty relation	196
9.10	Schrödinger's wave equation; eigen functions	200
	10 THE SPIN AND THE MAGNETIC MOMENT OF THE ELECTRON	
10.1	The discovery of the spin	205
10.2	The Stern-Gerlach experiment and the magnetic moment of the electron	207
10.3	Prospects of a Stern-Gerlach experiment with electron rays	210
10.4	Transverse polarization and its detection	213
10.5	Electron spin precession	216
10.6	Longitudinal polarization and helicity of beta-ray emission	219

10.7	Polarization transformers. Detection of longitudinal polarization	220
10.8	Production of polarized beams	223
10.9	Exact measurement of the magnetic moment of free electrons	230
	APPENDICES	
A	Potential distribution along the axis and off the axis	000

	in fields of circular symmetry	238
B	Conservation of the orbital magnetic moment of an electron in a magnetic field	241
С	Phase velocity and group velocity	243
D	Quantum numbers and atomic energy levels	246
Е	Physical quantities, their dimensions and symbols, m.k.s. and c.g.s. units	250
F	Physical constants	252
G	Numerical values for electron energies, velocities, electron momentum and wave-length	254
Index		257