CONTENTS

	PREFACE	vii
1.	INTRODUCTION	1
	1.1 Basic Properties of Nuclear Molecules	1
	1.2 Historical Overlook	4
2.	A BRIEF SURVEY OF ELEMENTARY EXPERIMENTAL DATA	17
	2.1 Coulomb Barrier and Sub-Barrier Resonances	17
	2.2 Elastic Scattering	20
	2.3 Inelastic Scattering	24
	2.4 Transfer Reactions	26
	2.5 Total Reaction and Fusion Cross Sections	28
	2.6 γ-Ray Measurements	32
	2.7 Molecular Single-Particle Effects	33
	2.8 Intermediate and Heavier Systems	36
3.	THEORETICAL BASES FOR NUCLEAR MOLECULES	48
	3.1 The Two-Center Shell Model	48
	3.2 Potential Resonances	55
4.	NUCLEUS-NUCLEUS INTERACTION POTENTIALS	61
	4.1 Optical Model Potentials	61
	4.2 Sudden and Adiabatic Potentials	64
	4.3 Phenomenological Models for Elastic Potentials	68
	4.3.1 The Liquid-Drop Model and the Shell Correction Method	69
	4.3.2 The Folding Model and the Energy-Density Formalism	71
	4.3.3 The Proximity Model	74
	4.4 Microscopic Models for Elastic Potentials	76
	4.4.1 Two-Center Shell Model Potentials	76

xii	CONTENTS
-----	----------

	4.4.2 Mass Parameters and Additional Potentials	82
	4.5 Imaginary Potentials	8:
5.	EXCITATION MECHANISMS AND MODELS FOR MOLECULAR COLLECTIVE STATES	91
	5.1 The Double Resonance Mechanism	9:
	5.2 The Band Crossing Model	9
	5.3 The Orbiting Cluster Model	100
	5.4 The Molecular Symmetry Model	104
	5.5 The Collective Two-Center Models	108
	5.5.1 The Model	108
	5.5.2 Application to the ${}^{12}C + {}^{12}C$ System	114
	5.6 The Cluster Model	12
6.	FORMATION AND DECAY WIDTHS OF NUCLEAR MOLECULAR CONFIGURATIONS	124
	6.1 Window for Molecular States	12:
	6.2 Window Effects versus Resonance Models	130
	6.3 The Coexistence Model	13:
	6.4 Shape Isomers in Fission	134
7.	GENERAL THEORY OF HEAVY-ION COLLISIONS	138
	7.1 Two Complementary Descriptions	138
	7.1.1 Atomic or One-Center Approach	138
	7.1.2 Molecular or Two-Center Approach	138
	7.2 General Formulations	139
	7.3 Feshbach's Projection Operator Method and Optical Model	142
	7.4 Generator-Coordinate and Resonating Group Methods	150
	7.4.1 Resonating Group Method	151
	7.4.2 Generator Coordinate Method	153

CONTENTS xiii

	7.4.3 Applications	156
8.	APPROXIMATE METHODS FOR HEAVY-ION COLLISIONS	158
	8.1 The Semiclassical Method	158
	8.1.1 Semiclassical Description of Scattering	159
	8.1.2 Rainbow Scattering	165
	8.1.3 Glory Scattering	167
	8.1.4 Orbiting (Spiral) Scattering	168
	8.2 The DWBA Method	171
	8.2.1 Review of the DWBA Formalism	171
	8.2.2 Applications to Heavy-Ion Reactions	177
	8.3 Time-Dependent Hartree-Fock Method	182
	8.3.1 The TDHF Equations	183
	8.3.2 Effective Interactions	187
	8.3.3 Methods of Calculation	189
	8.3.4 Results for Nuclear Molecules in TDHF	192
	8.4 Deep Inelastic Collisions	200
	8.4.1 Nuclear Molecules and Nuclear Friction	202
	8.4.2 Classical Friction Models	209
	8.4.3 Statistical Diffusion Models	217
9.	COLLECTIVE MOLECULAR STATES AND COUPLED CHANNELS CALCULATIONS	222
	9.1 Introductory Remarks	222
	9.2 Coupling Potentials	222
	9.3 Elastic and Inelastic Cross Sections	227
	9.4 Results for p-Shell Nuclei	229
	9.5 Results for s.d-Shell Nuclei	233

xiv CONTENTS

	9.6 Spin Alignments and Magnetic Substate Population	239
10.	REACTION THEORY IN THE MOLECULAR PARTICLE-CORE MODEL	249
	10.1 The Model and Possible Reaction Channels	249
	10.2 The Hamiltonian	253
	10.3 Molecular Wave Functions	255
	10.4 Coupled Equations	256
	10.5 Applications	257
	10.5.1 The ${}^{12}C + {}^{13}C$ System	257
	10.5.2 The ¹³ C + ¹³ C System	258
	10.5.3 The ${}^{12}C + {}^{17}O$ System	262
11.	MOLECULAR SINGLE-PARTICLE CONFIGURATIONS AND THE NUCLEAR LANDAU-ZENER EFFECT	269
	11.1 Two-Center Single-Particle Level Diagrams and Level Crossings	270
	11.1.1 Spherical Nuclei and Rotationally Symmetric Deformed Nuclei	270
	11.1.2 Arbitrarily Oriented Deformed Nuclei	273
	11.1.3 Dynamical Couplings Between Molecular States	279
	11.2 Nuclear Landau-Zener Effects	280
	11.2.1 Landau-Zener Approximation	280
	11.2.2 Semiclassical Approximation Including Turning Point Effects	283
	11.3 Applications	287
	11.3.1 The 12 C + 17 O System	287
	11.3.2 The ¹² C + ¹⁸ O System	289
	11.4 The Diabatic Two-Center Model	290

CONTENTS xv

12.	MICROSCOPIC MOLECULAR REACTION THEORY IN A PARTICLE-HOLE FORMALISM	297
	12.1 Hamiltonian in Coordinate Space	297
	12.2 Intrinsic States in Fock Space Representation	300
	12.3 Expansion of the Antisymmetrization Operator	303
	12.4 Hamiltonian in Fock Space and the Coupled Equations	305
	12.5 Application to the ${}^{12}C + {}^{12}C$ System	308
13.	THREE-CLUSTER NUCLEAR MOLECULES AND CLUSTER TRANSFER IN HEAVY-ION REACTIONS	312
	13.1 Three-Cluster and Many-Cluster Nuclear Molecules	313
	13.2 DWBA Formalism for Direct Heavy-Ion Transfer Reactions	315
	13.3 Two-Nucleon Transfer Reactions	324
	13.4 Three-Nucleon Transfer Reactions	328
	13.5 Four-Nucleon Transfer Reactions	330
	13.6 Massive Transfer Reactions	336
14.	FRAGMENTATION THEORY AND COLLECTIVE MASS TRANSFER	344
	14.1 Introduction	344
	14.2 Collective Coordinates	347
	14.3 The Collective Energy for the Relative Motion and Mass Transfer	352
	14.4 Calculation of the Adiabatic Potentials and Masses	353
	14.4.1 Adiabatic Potentials	353
	14.4.2 Potentials for Fission and Scattering	355
	14.4.3 Adiabatic Masses	360
	14.4.4 The Transfer Mass $B_{\eta\eta}$	361
	14.5 The Classical Equations of Motion	363
	14.6 Quantum Mechanical Description of the Mass Transfer	366

	14.7 Mass	and Charge Fragmentation in Fission	368
	14.7.	1 Formalism for Mass and Charge Fragmentation	369
	14.7.2	2 Comparison with Experiments	370
	14.7.	3 Time-Dependent Treatment of the Elongation	373
	14.8 Produ	ction of New Heavy Elements	378
	14.9 Cluste	er Radioactivity	389
15.	SPECULA	TIVE MOLECULAR EFFECTS	395
	15.1 Giant 1	Nuclear Molecules	395
	15.2 Excita	tion of Mass Transfer Resonances	402
	15.3 Molec	ules in the Quark Domain and at Relativistic Energies	406
SELE	CTED LIST	OF CONFERENCE PROCEEDINGS	409
REFE	RENCES		413
SURI	ECT INDE	x	465