Contents

1.	INTRODU	CTION	1			
	1.1.	Planck's radiation law	1			
	1.2.	The photoelectric effect	4			
	1.3.	Early atomic spectroscopy	5			
	1.4.	The postulates of Bohr's theory of atomic structure	7			
	1.5.	Development of quantum mechanics	9			
	1.6.	Interaction of atoms and radiation 1926-39.	11			
	1.7.	Optical physics since 1945	11			
	1.8.	The present situation (1975)	12			
	Probl	ems	13			
	Refer	References				
	Gener	al references and further reading	16			
2.	REVIEW	OF CLASSICAL ELECTRODYNAMICS	17			
	2.1.	Maxwell's equations	17			
	2.2.	The electromagnetic wave equations	20			
	2.3.	Plane wave solutions	22			
	2.4.	Linear and circular polarizations	24			
	2.5.	The energy density and the Poynting vector	28			
	2.6.	Vector and scalar potentials	30			
	2.7.	Electric dipole radiation	33			
	2.8.	Rate of radiation by an electric dipole oscillator	39			
	2.9.	Angular momentum of dipole radiation	40			
	2.10.	Magnetic dipole radiation	43			
	2.11.	Electric quadrupole radiation	44			
	2.12.	Multipole fields	48			
	Prob1	ems	49			
	Gener	al references and further reading	51			

3.	REVIEW	OF QUANTUM MECHANICS	52
	3.1.	The Schrödinger wave equation	52
	3.2.	Expectation values and matrix elements	55
	3.3.	Solution of Schrödinger's equation for spherically symmetric potentials	56
	3.4.	Orbital angular momentum	61
	3.5.	Hydrogenic wavefunctions	62
	3.6.	Spin angular momentum	67
	3.7.	Coupling of two angular momenta	69
	3.8.	Spin-orbit interaction and the vector model	73
	3.9.	Many-electron atoms	77
	Probl	ems	88
	Gener	al references and further reading	92
4.	THE SPO	NTANEOUS EMISSION OF RADIATION	93
	4.1.	The classical atomic model	93
	4.2.	Radiative lifetime of a classical atom	95
	4.3.	Spontaneous emission probability, A _{ki}	97
	4.4.	Spontaneous emission according to quantum electrodynamics	100
	4.5.	Spontaneous transitions between degenerate levels	102
	4.6.	Radiative lifetimes of excited atoms	103
	4.7.	Intensity of light emitted by optically thin sources	104
	4.8.	Oscillator strengths	106
	4.9.	The line strength, S _{ki}	109
	4.10.	Oscillator strengths in hydrogenic systems	109
	4.11.	Theoretical oscillator strengths in complex atoms	114
	Probl	ems	115
	Refer	ences	118
	Gener	al references and further reading	118

х

4

CONTENTS

5.	SELECTI	ON RULES FOR ELECTRIC DIPOLE TRANSITIONS	120		
	5.1.	Introduction	120		
	5.2.	One-electron atoms without spin	120		
	5.3.	One-electron atoms with spin	128		
	5.4.	Tensor properties of the electric dipole operator	129		
	5.5.	Many-electron atoms	131		
	5.6.	Relative intensities in L-S coupling and forbidden transitions	138		
	Probl	ems	139		
	Gener	al references and further reading	141		
6.	MEASUREMENT OF RADIATIVE LIFETIMES OF ATOMS AND MOLECUL				
	6.1.	The beam-foil method	142		
	6.2.	Fast beam experiments using laser excitation	159		
	6.3.	The delayed-coincidence method using electron excitation	160		
	6.4.	Delayed-coincidence experiments using optical excitation	171		
	Refer	ences	176		
	Gener	al references and further reading	177		
7.	FORBIDD	EN TRANSITIONS AND METASTABLE ATOMS	178		
	7.1.	Magnetic dipole transitions	18 0		
	7.2.	Electric quadrupole radiation	183		
	7.3.	Selection rules for magnetic dipole and electric quadrupole transitions	185		
	7.4.	Two-photon decay of hydrogenic systems	189		
	7.5.	Forbidden transitions in helium-like systems	203		
	7.6.	Collision processes involving metastable atoms	214		
	Proble	ems	224		
	Refere	ences	226		
	Genera	al references and further reading	228		

xi

¢

8.	THE WID	TH AND SHAPE OF SPECTRAL LINES	229
	8.1.	The natural or radiative lineshape	230
	8.2.	The pressure broadening of spectral lines	236
	8.3.	Doppler broadening	248
	8.4.	Comparison of Doppler, collision, and natural widths	251
	8.5.	Voigt profiles	252
	8.6.	Effect of the instrumental profile	253
	8.7.	Line profile measurements at low pressures and temperatures	257
	Probl	ems	266
	Refer	ences	269
	Gener	al references and further reading	270
9.	THE ABS	ORPTION AND STIMULATED EMISSION OF RADIATION	271
	9.1.	Classical description of absorption by electric dipole oscillator	271
	9.2.	Einstein's treatment of stimulated emission and absorption	274
	9.3.	The semi-classical treatment of absorp- tion and induced emission	278
	9.4.	Einstein B-coefficients defined in terms of intensity	283
	9.5.	Relations between Einstein B-coeffi- cients and f-values	284
	9.6.	The integral of the total absorption cross-section	285
	9.7.	Introduction of the atomic frequency response	285
	Proble	ems	286
	Refere	ences	288
	Genera	al references and further reading	288
10.	RADIATI	VE TRANSFER AND THE FORMATION OF SPECTRAL LIN	IES
	10.1.	Derivation of the equation of transfer	289
	10.2.	Solution of the transfer equation for uniformly excited sources	292
	10.3.	Non-uniform sources	296

Chapter 10 continued....

	10.4.	Equivalent widths of absorption lines	296
	10.5.	Measurement of relative f-values by absorption techniques	302
	10.6.	Determination of chemical composition and atomic densities by absorption techniques	308
	Problems	5	315
	Referen	ces	317
	General	references and further reading	318
11.	POPULATI	ON INVERSION MECHANISMS IN GAS LASERS	319
	11.1.	Introduction	319
	11.2.	Population inversion and the atomic gain coefficient	321
	11.3.	Transient and steady state popula- tion inversion	325
	11.4.	Population inversion mechanisms in gas lasers	329
	Problem	S	351
	Referen	ces	353
	General	references and further reading	354
12.	RESONANT	MODES OF OPTICAL CAVITIES	355
	12.1.	Introduction	355
	12.2.	Numerical solution of cavity mode problem	356
	12.3.	Approximate analytic solutions for transverse modes	361
	12.4.	Mode size and cavity stability	365
	12.5.	Design considerations for practical systems	368
	12.6.	Cavity Q-factor and resonance line- width	370
	Problem	5	372
	Referen	ces	375
	General	references and further reading	376

CONTENTS

13.	SATURATI OPERATIO	ON CHARACTERISTICS AND SINGLE-FREQUENC N OF GAS LASERS	CY 377
	13.1.	Frequencies of the resonant cavity modes	378
	13.2.	Gain required for oscillation	381
	13.3.	Gain saturation : homogeneously- broadened transitions	383
	13.4.	Gain saturation : inhomogeneously- broadened transitions	388
	13.5.	Measurement of gain coefficients	396
	13.6.	Mode-locking of gas lasers	399
	13.7.	Single-frequency operation of gas lasers	402
	13.8.	Output power versus tuning curves for single-frequency gas lasers	409
	13.9.	Saturated absorption spectroscopy using tunable gas lasers	414
	13.10.	Frequency stabilization of single- frequency gas lasers	420
	Problem	432	
	Referen	ces	436
	General	references and further reading	438
14.	TUNABLE	DYE LASERS AND ATOMIC SPECTROSCOPY	439
	14.1.	Introduction	439
	14.2.	Tunable organic dye lasers	440
	14.3.	Saturated absorption spectroscopy using tunable dye lasers	454
	14.4.	Two-photon absorption spectros- copy	462
	Referen	ces	470
	General	references and further reading	471
15.	THE HANL FLUORESC	473	
	15.1.	Resonance radiation and resonance fluorescence	474
	15.2.	Magnetic depolarization of resonance - the Hanle effect	radiation 477

xiv

cont....

Chapter 15 continued.....

16.

15.3.	Excitation by electron impact	485
15.4.	Range and accuracy of lifetime measurements	491
15.5.	Theory of resonance fluorescence experiments	492
15.6.	Theory of the Hanle effect	501
15.7.	Theory of resonance fluorescence in the $J_e = 1^{+}J_g = 0$ case	506
15.8.	Resonance fluorescence experiments using pulsed excitation	512
15.9.	Resonance fluorescence experiments using modulated excitation	520
Problem	ns	526
Referen	ices	530
General	references and further reading	532
OPTICAL	DOUBLE RESONANCE EXPERIMENTS	534
16.1.	Magnetic resonance and excited atoms	534
16.2.	Theory of the Brossel-Bitter experi- ment	539
16.3.	Discussion of the optical double- resonance method	548
16.4.	Radiation trapping and coherence narrowing	552
16.5.	Collision broadening in resonance fluorescence experiments	557
16.6.	Light modulation in double-resonance experiments	572
16.7.	Magnetic resonance in the density matrix formalism	576
16.8.	Expansion of the density matrix in terms of irreducible tensor opera- tors	584
Problem	S	586
Referen	ces	589
General	references and further reading	590

17.	OPTICAL	PUMPING EXPERIMENTS	592		
	17.1.	Introduction	592		
	17.2.	Principles of optical pumping	593		
	17.3.	Effect of relaxation processes	601		
	17.4.	Investigation of longitudinal re- laxation times	604		
	17.5.	Spin-exchange collisions	613		
	17.6.	Optical pumping of metastable atoms	616		
	17.7.	Optical pumping and magnetic resonance	619		
	17.8.	Transverse magnetization and Hertzian coherence in optical pumping experi- ments	629		
	17.9.	Quantum theory of the optical pumping cycle			
	Problem	S	654		
	Referen	ce s	658		
	General	references and further reading	659		
18.	THE HYPE TIGATION	RFINE STRUCTURE OF ATOMS AND ITS INVES- BY MAGNETIC RESONANCE METHODS	661		
	18.1.	Theory of hyperfine structure	662		
	18.2.	Investigation of hyperfine structure of ground-state atoms by optical pumping	676		
	18.3.	Hyperfine pumping and the measurement of $v_{ m HFS}$	682		
	18.4.	Optically pumped rubidium frequency standards	689		
	18.5.	The atomic beam magnetic resonance technique	692		
	18.6.	Hyperfine structure investigations by the atomic beam technique	701		
	18.7.	Cesium beam atomic clock	705		
	18.8.	Hyperfine structure of atomic hydrogen	708		
	18.9.	Investigation of the hyperfine struc- ture of excited states	714		
	18.10.	Conclusion	730		
	Problem	s	731		
	Referen	ces	738		
	General	references and further reading	740		

APPENDIX:	TABLE	OF	FUNDAMENTAL	CONSTANTS	742
AUTHOR IN	DEX				745
SUBJECT IN	NDE X				/54

•

CONTENTS

xvii