Contents | Preface | v | |--|-------------| | 1. Symmetry and Invariance—Some Preliminary Notions | 1 | | 1. Introduction | 1 | | 2. The group concept | 2 | | 3. Lie groups and Lie algebras | 2
3
7 | | 4. Symmetry and invariance | | | 5. The direct product group | 9 | | 2. Theory of the Auger Process | 13 | | 1. Introduction | 13 | | 2. Mechanism of the Auger process. Real and virtual photons | 14 | | 3. The Møller formula | 20 | | 4. Generalized derivation of the Møller formula | 22 | | 5. Some related concepts and processes | 27 | | 3. The Coulomb Field and Coulomb Wave Functions | 30 | | 1. Introduction | 30 | | 2. Symmetry properties of the Coulomb field | 32 | | 3. The non-relativistic spin-½ (NRS) particle in a Coulomb field | 36 | | 4. Some Coulomb field calculations of Auger transitions | 39 | | 5. Screening parameters | 56 | | 6. The hydrogenic atom—some dividends | 58 | | 4. Symmetry-breaking and the Classification of States | 64 | | 1. Introduction | 64 | | 2. The LS coupling scheme (Russell-Saunders coupling) | 68 | x CONTENTS | | 3. The jj coupling scheme 4. The intermediate coupling scheme 5. Configuration interaction 6. The mixed coupling scheme | 72
76
79
87 | |----|---|---| | 5. | Some Central-field Calculations | 91 | | | Introduction Wigner algebra and selection rules Auger transition probabilities in jj coupling Transition rates with LS coupling Transition probabilities with intermediate coupling Electron energies of the K-Auger spectrum | 91
92
93
104
109
119 | | 6. | The Many-Electron Atom | 126 | | | Introduction Symmetries of the many-electron system Techniques for the many-electron system Nonrelativistic self-consistent-field calculations—Theory and Experiment The Relativistic Hartree-Fock method The Thomas-Fermi-Dirac method Relativistic approaches to the many-electron atom—Theory and Experiment | 126
128
130
138
142
148
151 | | 7. | Some Recent Advances in Auger Theory | 158 | | | Satellite spectra Auger transitions in partially filled shells Effects of electron correlation | 158
163
171 | | 8. | Auger Electron Spectroscopy and its Application to Surface Science | 180 | | | Introduction Auger electron energies—general features Auger electron spectroscopy as a surface technique—historical background | 180
188
193 | | CONTENTS | X i | |--|------------| | 4. The secondary electron spectrum | 195 | | 5. Auger electron spectra of atoms in solids | 199 | | 6. Experimental technique | 218 | | 7. Surface chemical analysis with AES | 238 | | References | 251 | | Index | 259 |