Contents

		:
	OF CONTRIBUTORS	ix xi
CONT	ENTS OF PREVIOUS VOLUMES	
Phys	sics of the Hydrogen Maser	
	C. Audoin, J. P. Schermann, and P. Grivet	
т	Introduction	2
	Hydrogen Maser Techniques	5
II.	Dynamical Behavior of the Maser	8
	Hyperfine Spectroscopy	29
v.	Interaction of Atomic Hydrogen with Radio Frequency Fields	33
٧.	References	42
	ecular Wave Functions: Calculation and Use in Atomic and Molecular	ular
Proc	esses	
	J. C. Browne	
1	Introduction and General Principles	47
11	Computations of Wave Functions, Potential Surfaces, and Coupling Matrix	
11.	Elements	53
ш	Some Results and Expectations for the Future	78
	Atom-Atom Scattering	79
	Radiative Processes	83
٧.	References	87
¥	alized Molecular Orbitals	
LOC		
	Harel Weinstein, Ruben Pauncz, and Maurice Cohen	
T.	Introduction	97
	Density Matrix Formalism	99
	The Edmiston-Ruedenberg Localization Method	102
	The Method of Boys and Foster	109
	Direct Localization Methods	116
	Internal and External Localization Criteria	121
	The Method of Magnasco and Perico	122
VIII.	The Method of Peters	126
IX.	Molecular Orbitals Determined from Localization Models	128
	Localized Orbitals in Expansion Methods	134
	Concluding Remarks	138
	References	138

vi CONTENTS

J. Gerratt	
J. Gerratt I. Introduction II. Properties of the Exact Electronic Eigenfunction III. Construction of the Spin Functions IV. The Spin-Coupled Wave Functions V. Calculation of Matrix Elements of the Hamiltonian VI. The Orbital Equations VII. Symmetry Properties of the Spin-Coupled Wave Functions VIII. The Hund's Rule Coupling IX. The General Recoupling Problem and Bonding in Molecules X. Conclusions Note Added in Proof Appendix A. Proof of the Relations (59)-(62) Appendix B. Matrix Elements of Spin-Dependent Operators	141 144 147 152 154 163 168 180 194 206 207 207
Appendix C. Proof That the Orbital Equations Are Invariant under \mathscr{H} Appendix D. Proof That the Operators $F^{(a)}$ and $F^{(b)}$ Are Invariant under Unitary Transformations of the ϕ_u and ψ_u Sets of Orbitals References	213 215 219
Diabatic States of Molecules—Quasistationary Electronic States Thomas F. O'Malley	
 I. Introduction II. Mathematical Preliminaries III. Molecular Ground States—The One-State Problem—The Stationary Adiabatic Representation IV. The Na + Cl Two-State Problem—Covalent and Ionic States V. Charge Exchange in Helium—Single Configuration Diabatic States VI. Dissociative Recombination and Attachment—The Quasistationary State Representation VII. Slow Heavy-Particle Collision Theory—Extension of the Quasistationary Representation to Rydberg States VIII. Summary and Conclusion References 	223 225 228 230 232 236 243 245 248
Selection Rules within Atomic Shells	
B. R. Judd I. Introduction II. Groups III. Irreducible Representations IV. Generalized Triangular Conditions V. Generators VI. Conflicting Symmetries	252 252 258 270 273 276

General Theory of Spin-Coupled Wave Functions for Atoms and Molecules

	CONTENTS	vii
VII. Oriented Sp VIII. Special Cas IX. Conclusion References	ses	280 282 284 285
Green's Functi	on Technique in Atomic and Molecular Physics	
Gy. Csan	ak, H. S. Taylor, and Robert Yaris	
III. Coupled Sy Functional Equation) IV. Scattering	icle Green's Function and Physical Quantities ystem of Equations for Green's Functions (The Method of Differentiation; The Dyson Equation; The Bethe-Salpeter bative Approximation Method on Methods A B	288 290 305 321 330 339 354 358 359 360
Metals	Seudo-Potentials with Emphasis on Their Application to	Liquid
Nathan V	Viser and A. J. Greenfield	
III. SimplificatIV. FormulationV. Screening	g Ideas of the Pseudopotential ion of the Form Factor ons of $v(q)$ Useful for Liquid Metals about the Various Pseudopotentials	363 365 370 374 381 384 385 386
AUTHOR INDEX SUBJECT INDEX		389 399