Contents

.

1.	Intro	luction	1
2.	Class	ical Description of Interference Phenomena in Radiation	8
	2.1	The Classical Oscillator Model of Atomic Emission	8
	2.2	A Classical Oscillator in a Magnetic Field	15
	2.3	Emission from an Oscillator in a Magnetic Field	17
	2.4	Emission from an Ensemble of Oscillators	20
	2.5	Beats in Intensity	21
	2.6	The Hanle Effect	23
	2.7	Combination of Hanle Effect and Quantum Beats	25
	2.8	Beat Resonances	26
	2.9	Parametric Resonance	27
	2.10	Conclusion	28
3.	Quan	tum Mechanical Description of Interference Phenomena	30
	3.1	The Density Matrix	30
	3.2	Derivation of the Density Matrix of Ensembles	
		of Excited States from the Wave Equation	32
	3.3	The Equation of Motion of the Density Matrix	38
	3.4	Spontaneous Emission	43
	3.5	Limits of the Density Matrix Apparatus.	
		The Scattering Matrix	44
	3.6	Interference Signals	51
	3.7	The Radiation Pattern and Polarization for Transitions	
		Between Eigenstates of the Angular Momentum Operator	60
	3.8	Influence of Interference Between States on the Polarization	
		of Spontaneous Radiation	62
	3.9	Redistribution of Radiated Energy	
		Due to the Interference of Quantum States	64
	3.10	Some Results from the Formalism	
		of Irreducible Tensor Operators	80
	3.11	Radiation Polarization in the Statistical Tensor Formalism.	
		Comparison of the Conclusions of Quantum Mechanical	
		and Classical Approaches	87
	3.12	Biaxial Alignment	91
	3.13	Level Anti-crossings	94

	3.14	Interference Phenomena in Magnetic Resonance	100
	3.15	Application of Interference Signals	106
4.	Expe	rimental Observation of Interference Signals	108
	4.1	Basic Experimental Scheme	108
	4.2	Ensembles of Particles	108
	4.3	Techniques for Inducing Coherence	109
	4.4	Observation of Interference Phenomena	112
	4.5	Hanle Effect in Atoms in the Ground State	113
	4.6	Manifestation of the Interference of States in Collisions	119
	4.7	Quantum Beats upon Pulse Excitation	121
	4.8	Coherent Resonances	126
	4.9	Other Resonances	130
	4.10	Self-Alignment of Atomic States in a Plasma	133
	4.11	Hidden Alignment	139
	4.12	Self-Orientation	142
	4.13	Interference of Atomic States in Astrophysics	145
	4.14	Cascaded Transitions	148
	4.15	Diffusion of Radiation	156
	4.16	Influence of the Laboratory Magnetic Field	
		on the Hanle Signal Shape. False Hanle Signals	163
	4.17	Spectral Content of the Exciting Light	
		and Absorption Line Profile	168
	4.18	Faraday Rotation	170
	4.19	Hanle Effect Due to Excitation That Is Random with Time	172
	4.20	Polarization of Atomic Fluorescence in a Flame	173
	4.21	Detection of the Polarization Moments by Radioactivity	174
	4.22	Use of the Polarization Moments for Improving the Accuracy	
		of Nonlinear Spectroscopic Techniques	176
	4.23	Conclusion	179
_	C 1		
5.	Calcu	llation of Interference Signals	180
	5.1	An Atom in a Magnetic Field	180
	5.2	The Hyperfine Structure	183
	5.3	The Magnetic Dipole Interaction Constant	186
	5.4	Quadrupole Interaction Between a Nucleus	
		and an Electron Shell	189
	5.5	Transition Matrix Elements of the Electric Dipole Moment	195
	5.6	Eigenpolarizations of Transitions	202
	5.7	Matrix Elements of the Dipole Transition	
		Between States with Hyperfine Structure	204
	5.8	I ne Stark Effect	208
	5.9	Atoms with Nonzero Nuclear Spin in External Fields	214
	5.10	Perturbation Operators and Their Matrix Elements	215
	5.11	The Zeeman Effect in Atoms with Hyperfine Structure	217

5.12	The Paschen–Back Effect	221			
5.13	Hyperfine Splitting in a Weak Magnetic Field	222			
5.14	The Stark Effect in Atoms with Hyperfine Structure				
	in a Weak Electric Field	223			
5.15	The Stark Effect in Atoms with Hyperfine Structure				
	in Intermediate Fields	225			
5.16	Splitting of Atomic Levels with Hyperfine Structure				
	in a Strong Electric Field	227			
5.17	Behaviour of Atoms in Combined Fields	229			
		220			
References					
a 11		249			
Subject	Index	249			