Contents

Part 1 Field Desc	orption
-------------------	---------

1.1	1.1 Principles of Field Desorption Mass Spectrometry (Review) By F.W. Röllgen (With 5 Figures)			
1.2	Analytical Application of Field Desorption Mass Spectrometry (Review). By HR. Schulten (With 11 Figures)			
Part	2 ²⁵² Cf-Plasma Desorption			
2.1	High Energy Heavy-Ion Induced Desorption (Review) By R.D. Macfarlane (With 8 Figures)	32		
2.2	Secondary Ion Emission From Metals Under Fission Fragment Bombardment. By K. Wien and O. Becker (With 5 Figures)	47		
2.3	Fast Heavy Ion Induced Desorption of Molecular Ions from Small Proteins. By B. Sundqvist, P. Hakansson, I. Kamensky, and J. Kjellberg (With 4 Figures)	52		
2.4	Problems in Standardization of ²⁵² Cf Fission Fragment Induced Desorption Mass Spectrometry. By H. Jungclas, L. Schmidt, and H. Danigel (With 4 Figures)	58		

.

Part 3 Secondary Ion Mass Spectrometry (SIMS) Incuding FAB

3.1	Secondary Ion Mass Spectrometry of Organic Compounds (Review) By A. Benninghoven (With 16 Figures)	64
3.2	Fast Atom Bombardment (Review). By C. Fenselau (With 8 Figures) \ldots	90
3.3	Changes in Secondary Ion and Metastable Ion Mass Spectral Patterns with Experimental Conditions. By H. Kambara (With 7 Figures)	101
3.4	Time-of-Flight Measurements of Metastable Decay By K.G. Standing, W. Ens, and R. Beavis (With 3 Figures)	107
		VII

3.5	Design and Performance of a New Time-of-Flight Instrument for SIMS By P. Steffens, E. Niehuis, T. Friese, and A. Benninghoven (With 4 Figures)
3.6	Secondary Ion Emission from Adsorption Layers on Nickel By D. Greifendorf, P. Beckmann, M. Schemmer, and A. Benninghoven (With 4 Figures)
3.7	Secondary Ion Emission from UHV-Deposited Amino Acid Overlayers on Metals. By W. Lange, D. Holtkamp, M. Jirikowsky, and A. Benninghoven (With 6 Figures) 124
3.8	Temperature Dependence of Secondary Ion Emission from Phenylalanine By W. Sichtermann (With 4 Figures)132
3.9	Matrix Effects on Internal Energy in Desorption Ionization By K.L.Busch, B.H.Hsu, YX.Xie, and R.G.Cooks (With 5 Figures) 138
3.10	Mass Spectrometry of Secondary Ions: Polymers, Plasticizers and Polycyclic Aromatic Hydrocarbons. By J.E. Campana, M.M. Ross, S.L. Rose, J.R. Wyatt, and R.J. Colton (With 4 Figures)
3.11	SIMS Studies of Polymer Surfaces. By D. Briggs (With 7 Figures) \dots 156
3.12	A Comparative Study of Organic Polymers by SIMS and FABMS By D. Briggs, A. Brown, J.A. Van den Berg, and J.C. Vickerman (With 4 Figures)
3.13	Use of a Cesium Primary Beam for Liquid SIMS Analysis of Bio-Organic Compounds. By W. Aberth and A.L. Burlingame (With 2 Figures) 167
3.14	Fast Atom Bombardment Study of Glycerol Mass Spectra and Radiation Chemistry. By F.H. Field 172
3.15	The Use of FAB for the Solution of Difficult Mass Spectral Problems By C.E. Costello, A.M. Van Langenhove, S.A. Martin, and K. Biemann (With 4 Figures) 173
3.16	Biological and Medical Applications of Organic SIMS. By M. Junack, A. Eicke, W. Sichtermann, and A. Benninghoven (With 3 Figures) 177
3.17	Low and High Resolution FAB Applications in Positive and Negative Ionization Mode. By U. Rapp and M. Höhn (With 10 Figures) 182

Part 4 Laser Induced Ion Formation

4.1	Laser Induced Ion Formation from Organic Solids (Review) By F. Hillenkamp (With 1 Figure)	190
4.2	Time Resolved Laser Desorption. By R.J. Cotter, M. Snow, and M. Colvin (With 3 Figures)	206
4.3	New Developments in Laser Pulse Induced Field Desorption By J.H. Block, W. Drachsel, N. Ernst, Th. Jentsch, and S. Nishigaki (With 4 Figures)	211

VIII

4.4	Thermal Processes in Repetitive Laser Desorption Mass Spectrometry By F. Heresch (With 3 Figures)	217
4.5	Laser Mass Spectrometry of Organic Compounds By D.M. Hercules, C.D. Parker, K. Balasanmugam, and S.K. Viswanadham (With 4 Figures)	222
4.6	LAMMA 1000, a New Reflection Mode Laser Microprobe Mass Analyzer, and Its Application to EDTA and Diolen® By H.J. Heinen, S. Meier, and H. Vogt (With 3 Figures)	229
4.7	Some Experiments on Laser Induced Cationization of Sucrose By P. Wieser and R. Wurster (With 4 Figures)	235
4.8	Mass Spectrometry of Organic Compounds ($\leq 2000 \text{ amu}$) and Tracing of Organic Molecules in Plant Tissue with LAMMA By U. Seydel and B. Lindner (With 5 Figures)	240

Part	5	Other Ion	Formation Processes	
5.1	Ion By I	Emissions M.L. Vestal	from Liquids (Review) (With 15 Figures)	246
5.2	Fas witi	t Dust Part h Other Tec	ticles as Primaries — Comparison of Ion Formation Chniques. By F.R. Krueger	264

Index of Contributor.	5	269
-----------------------	---	-----