Chapter 1.	FORCES NEAR INTERFACES	1
Introdu	uction	1
1.1.	Molecular and Electric Forces in Interfacial Layers	4
1.2.	Formation and Structure of Electrical Double	8
1.3.	Diffuse Part of the EDL. The Poisson-Boltzmann Equation	9
1.4.	The Debye-Hückel Equation. Relation between Surface Potential and Surface Charge	12
1.5.	Planar Double Layer. Some Exact Solutions of the General Poisson—Boltzmann Equation .	13
1.6.	More Complex Situations: Curved Surface, and Discreteness of Surface Charge	15
1.7.	Adsorption of Ions in the Stern Layer	16
1.8.	Charging of Surfaces by Dissociation of Ionogenic Groups	18
1.9.	Testing of Models of Ionized Surfaces	18
Refere	ences	19
Chapter 2.	DISJOINING PRESSURE /	25
2.1.	Two Kinds of Surface Force	25
2.2.	Definition of Disjoining Pressure	27

2.3.	Relationship between Disjoining Pressure and Other Thermodynamic Functions	31
2.4.	Pressure Distribution in the Interfacial Transition Zone	33
2.5.	Refinement of the Definition of Disjoining Pressure	36
2.6.	Equilibrium of Films under Gravity	40
2.7.	Hydrodynamics of Thin Films	44
2.8.	Thermodynamic Theory of Interaction between Bodies with Curved Surfaces	46
Refer	ences	51
Chapter 3.	THE THERMODYNAMIC THEORY OF STABILITY OF THIN FILMS	53
3.1.	Stability and Equilibrium of Interlayers between Parallel Plates	53
3.2.	Stability of Interlayers between Convex Bodies	55
3.3.	Stability of Wetting Films	57
3.4.	Stability of Interlayers between Two Identical Fluids	59
Refer	ences ,	83
Chapter 4.	DISPERSION FORCES IN THIN INTERLAYERS AND FILMS	85
4.1.	Historical Background of the Theory of Intermolecular Forces	85
4.2.	Direct Measurements of Molecular Attraction between Two Solids	88
4.3.	Experimental Results	93
4.4.	The Theory of Molecular Attraction between	98
	4.4.1. Calculation of the Interaction be- tween Macroscopic Objects by Summing the Interactions between Micro- objects	98
	4.4.2. E. M. Lifshitz's Macroscopic Theory of Molecular Attraction between Con- densed-State Bodies	100

.

4.5.	Comparison of the Results of Early Experi- ments with the Theory	106
	4.5.1. Comparison with the Results of Cal- culations Carried Out by the Method of Summation of All Pairwise Mo- lecular Interactions	106
	4.5.2. Comparison with the Macroscopic Theory of Molecular Attraction	106
4.6.	Current Status of the Macroscopic Theory of Molecular Forces	109
<i>'</i> .7.	Main Results of the Experimental Verifica- tion of the Theory of Molecular Interaction between Macroscopic Bodies	120
Refere		128 146
		140
Chapter 5.	THE ADSORPTION COMPONENT OF DISJOINING PRES- SURE IN NONIONIC SOLUTIONS	151
Refere		171
Charten		1/1
Chapter 6.	THE ELECTROSTATIC COMPONENT OF DISJOINING PRESSURE	173
6.1.	Methods of Calculation of Disjoining Pressure I_e	173
6.2.	Interaction between Identical Layers. Boundary Conditions	179
6.3.	Interaction at Constant Charge or at Con- stant Surface Potential	181
6.4.	Interaction between Double Layers in Asym- metrical Electrolytes	183
6.5.	Some Approximate Formulas for Disjoining Pressure	185
6.6.	Gibbs Free Energy of the Interaction between Flat Double Layers under Different Boundary Conditions	189
6.7.	Interaction between Charged Spherical Par- ticles	189
6.8.	Interaction between Unequally Charged Sur- faces	195
6.9.	Effect of Discreteness of Surface Charge	210
6.10.	Disjoining Pressure in a Thin Free Film	210
0.10.	orelearning treesere in a futu tree titm	210

	٠	٠	
VU	•	п.	1
A V	-		+

6.11.	Experimental Verification of the Theory of	
	Electrostatic Interaction	222
Referen	nces	228
Chapter 7.	THE STRUCTURE OF BOUNDARY LAYERS OF LIQUIDS AND THE STRUCTURAL COMPONENT OF DISJOINING PRESSURE	231
7.1.	Structural Changes in Thin Interlayers and Boundary Layers of Water	232
7.2.	Boundary Layers with Liquid-Crystal Struc- ture	244
7.3.	Boundary Layers of Nonpolar Liquids	252
7.4.	The Study of Boundary Layers of Liquids by the Blow-Off Technique	253
7.5.	Theory of the Structural Component of Dis- joining Pressure	264
7.6.	Experimental Isotherms of the Structural Component of Disjoining Pressure	271
Refere	nces	283
Chapter 8.	THE DERJAGUIN-LANDAU-VERWEY-OVERBEEK (DLVO) THEORY OF STABILITY OF LYOPHOBIC COLLOIDS .	293
8.1.	Effects of Electrolytes on Lyophobic Colloids	293
8.2.	Kinetics of Coagulation of Lyophobic Colloids	296
8.3.	Coagulation Criteria	297
8.4.	Exact Solution	300
8.5.	Effect of Charging Mechanism	302
8.6.	Further Development and Verification of the DLVO Theory	305
Refere	nces	308
Chapter 9.	THE THEORY OF HETEROCOAGULATION IN LYOPHOBIC SYSTEMS	311
9.1.	Destabilization Criteria for Heterodisper- sions with a Positive Hamaker Constant	312
9.2.	Destabilization Criteria for Dispersions with a Negative Hamaker Constant	319
9.3.	Development and Verification of the Theory .	323
Refere	nces	325

Chapter 10.	WETTING FILMS	327
10.1.	Disjoining Pressure of Wetting Films	327
10.2.	Experimental Methods of Determining the Dis- joining Pressure Isotherms of Wetting Films.	330
10.3.	Disjoining Pressure Isotherms of Wetting Films Formed by Various Liquids	338
10.4.	Wetting Films on Nonflat Surfaces	359
Referen	nces	364
Chapter 11.	SURFACE FORCES IN TRANSPORT PHENOMENA	369
11.1.	Capillary Osmosis	369
11.2.	Reverse Osmosis	380
11.3.	Diffusiophoresis	388
11.4.	Thermo-osmosis, the Mechanocaloric Effect, and Thermophoresis	390
11.5.	Thermocrystallization Flow in Thin Non- freezing interlayers	409
Referen	nces	427
Conclusion		433
Index		435

xix