VAN DER WAALS INTERACTIONS BETWEEN SURFACES OF BIOLOGICAL INTEREST

SHLOMO NIR

Department of Experimental Pathology, Roswell Park Memorial Institute, Buffalo, NY 14263, U.S.A.

Contents

1.	Introduction A. Background	2 2
	B. Biological applications	3
2.	Microscopic Approach to Van der Waals Interactions between Bodies A. Van der Waals interactions in gases	3 3 3
	(i) Orientation effect or dipole–dipole interaction	3
	(ii) Induction or polarization	
	(iii) Dispersion interactions	5
	(iv) Magnitudes of orientation, induction and dispersion effects	7
	B. Interaction between bodies (i) Microscopic approach. Application to simple geometries	7
	(ii) Formulas for various geometries	4 5 7 7 7 8
	(iii) Retardation effects	12
3.	Determination of Van der Waals Parameters	13
	A. Definitions. Long range case	13
	B. Relative importance of band contributions to dispersion interactions	14
	C. Determination of polarizabilities, dispersion coefficients and characteristic frequencies (i) Dispersion equations of pure liquids	14
	(ii) Determination of parameters from measurements on solutions	14 20
	(iii) Quantum mechanical methods and addition of bond polarizabilities	21
	(iv) The Lorentz-Lorenz and other representations. Dielectric constant	22
	D. Polarizabilities and Van der Waals parameters of substances composing cellular surfaces, media and substrates	23
4.	Macroscopic Approaches	24
	A. Lifshitz theory. Introduction and outline	24
	B. Force acting on two semi-infinite slabs separated by thin film (i) Neglect of retardation effects. Low temperatures	24
	(ii) Inclusion of retardation effects. Finite temperatures	24 24
	C. Other macroscopic approaches. Extension to other geometries	28
5.	Comparison between Macroscopic and Microscopic Approaches. Micro-macro Approach	30
	A. Reduction of macroscopic to microscopic expression for dispersion forces	30
	B. Orientation and induction effects. Energy and entropy	32 33
	C. Micro-macro approach. Inclusion of many-body effects in pair interactions	33
6.	Experimental Verification	35
7.	Biological Applications	37
	A. Van der Waals interactions between cell surfaces. Cell-cell and cell-substrate systems	37
	(i) Model for cell periphery	37
	(ii) Computational procedure	38
	(iii) Results and discussion B. Spherical systems. Vesicles	38 45
	(i) Van der Waals interactions between phospholipid vesicles. The model	45
	(ii) Computational procedure	45
	(iii) Results and discussion	47
	C. Electrostatic repulsion and total potential curve	48
	D. Discussion. Adhesion and Fusion (i) Remarks on question of cellular adhesion	50 50
	(ii) Fusion	52
Δ	cknowledgements	54
	References	