CONTENTS

	List of Contributors	vii
	Preface	ix
1.	MOLECULAR BEAMS FROM NOZZLE SOURCES	1
	James B. Anderson	
	List of Symbols	3
Ι.	Introduction	2
II.	Historical Summary	6
III.	General Principles of Operation	15
IV.	The Continuum Free Jet	19
V.	Transition Flow in Free Jets	26
VI.	Internal Relaxation Processes in Free Jets	37
VII.	Free Jets of Gas Mixtures	41
VIII.	Interaction of Jets with Background Gases	47
IX.	Skimmer Interference	51
х.	The Free Jet as a Beam Source	56
	References	62
	Figures	67
2.	CLUSTER BEAMS FROM NOZZLE SOURCES	93
	Otto F. Hagena	
	List of Symbols	94
1.	Introduction	96
II.	Cluster Ream System-General	99

iv CONTENTS

III.	Condensation and Cluster Formation in Nozzle Flows	106
IV.	Performance of Cluster Beam Sources	128
ν.	Cluster Size Measurement	140
VI.	Experiments with Cluster Beams	153
VII.	Concluding Remarks	158
	Notes	160
	References	161
	Figures	167
3.	LOW-DENSITY HYPERSONIC WIND TUNNELS	183
	J. Leith Potter	
	List of Symbols	184
Ι.	Introduction	187
II.	Simulation Requirements	197
III.	Design Considerations	221
IV.	Effects of Flow Nonuniformity	249
٧.	Flow Calibration Measurements	256
VI.	Concluding Remarks	276
	Notes	279
	References	279
	Figures	291
4.	DIAGNOSTIC TECHNIQUES IN HIGH TEMPERATURE GASDYNAMICS	313
	R. I. Soloukhin	
	List of Symbols	314
Ι.	Introduction	315
II.	Gasdynamics of Molecular and Chemical Relaxation Zones	
	behind a Shock Wave	316
III.	High Speed Photography and Instrumentation	319
IV.	Density Measurements	323
V.	Gas Temperature Measurements	343
VI.	Electrical Conductivity Measurements in Shock Waves	349

CONTENTS	ν

VII.	Pressure Measurements	351
VIII.	Complex Shock Tube Experiments and Illustrations	353
IX.	Concluding Remarks	363
	Notes	363
	References	367
	Figures	377
	Author Index	407
	Subject Index	417