

CONTENTS

NOTATION GUIDE	xv
PART I	
INTRODUCTION	
1. WHAT ARE THE CRITICAL PHENOMENA? A SUR	VEY
OF SOME BASIC RESULTS	1
1.1. Classical era of critical phenomena	1
1.2. Modern era of critical phenomena	9
1.3. Phase transitions in other systems	18
2. USEFUL THERMODYNAMIC RELATIONS FOR FI	LUID
AND MAGNETIC SYSTEMS	22
2.1. The thermodynamic state functions U, E, G , and A	22
2.2. Differential relations for the state functions: the thermody	mamic 23
square 2.3. Two basic response functions: the specific heat and the	7 - 1 - 1
pressibility	25
2.4. Stability and convexity relations	28
2.5. Geometrical interpretation of the Gibbs and Helr	
potentials	30
2.6. Analogies between fluids and magnets	32
2.7. The thermodynamic state functions for a magnetic system	m 33
2.8. Differential relations and the thermodynamic square for	
netic state functions	33
2.9. Magnetic response functions: specific heat and susceptibil	lity 35
2.10. Convexity relations for magnetic systems	36
2.11. Geometrical interpretations of the thermodynamic potent	ials for
a magnetic system	37
PART II	
CRITICAL-POINT EXPONENTS AND RIGORO	US
RELATIONS AMONG THEM	
3. CRITICAL-POINT EXPONENTS	39
3.1. Definition of a critical-point exponent	39
3.2. The critical-point exponents α , β , γ , δ , ν , and η	42
3.3. Numerical values of critical-point exponents	46
3.4. The exponents Δ and θ	49
3.5. Useful relations among critical-point exponents	51

4.		ONENT INEQUALITIES	
	4.1.	The Rushbrooke and Coopersmith inequalities	53
	4.2.	The Griffiths inequality	56
	4.3.	More inequalities	60
		PART III	
\mathbf{C}	LASS	ICAL THEORIES OF COOPERATIVE PHENOME	NA
5.	THE	VAN DER WAALS THEORY OF LIQUID-GAS	
	\mathbf{PH}	ASE TRANSITIONS	67
	5.1.	Heuristic derivation of the van der Waals equation of state	67
	5.2.	van der Waals isotherms and the Maxwell construction	69
	5.3.	The van der Waals critical point	71
	5.4.	The law of corresponding states	72
	5.5.	Critical-point exponents for the van der Waals theory	74
	5.6.	The van der Waals equation of state as a mean field theory	76
6.		MEAN FIELD THEORY OF MAGNETIC PHASE	
		ANSITIONS	79
	6.1.		80
	6.2.	The assumption of an effective molecular field	82
		Critical-point exponents for the mean field theory	84
	6.4.	The mean field theory as an approximation for the Heisenberg	
	C E	model	89
	6.5.	Equivalence of the mean field theory and an infinite interaction	0.1
¥=35		range	91
7.		PAIR CORRELATION FUNCTION AND THE	
	\mathbf{OR}	NSTEIN-ZERNIKE THEORY	94
	7.1.	The density-density correlation function for a fluid system	94
	7.2.	Relation between density fluctuations, the isothermal com-	
	94 <u>000</u> 30 <u>00</u> 9	pressibility, and the density-density correlation function	96
	7.3.	The structure factor: relation between the pair correlation	36
		function and the scattering of electromagnetic radiation	98
		Ornstein-Zernike theory of the scattering amplitude	100
	7.5.	Further developments of the Ornstein-Zernike theory	106
		PART IV	
	I	MODELS OF FLUID AND MAGNETIC PHASE	
		TRANSITIONS	
8.	RESU	JLTS PROVIDED BY EXACT SOLUTION OF	
		DEL SYSTEMS	109
	8.1.	A model Hamiltonian for a classical spin system: the generalized	
		Heisenberg model	110
al .	8.2.	Exact solution of the case $d=1$, $D=1$, $H=0$: The linear	
			115
	8.3.	The linear chain of arbitrary dimensional spins in zero magnetic	
		field	124
	8.4.	The spherical model as the limit of infinite spin dimensionality	128

CONTENTS	xiii

0.0.	The transfer matrix method: application to the $d=1$ Ising model in a magnetic field	131
9. RESULTS OBTAINED FROM MODEL SYSTEMS BY		
\mathbf{AP}	PROXIMATION METHODS	134
9.1.	Successive approximation concept	135
9.2.	Series expansion methods	136
9.3.	Calculation of the coefficients in the high-temperature expansion of the partition function	138
9.4.	Calculation of the coefficients in the high-temperature expansion	
	of the two-spin correlation function	145
9.5.		
	THE THE TANK OF THE WINDOW OF THE WINDOW OF THE DAYS NOW WINDOW. WE WANT WINDOW OF THE DAYS NOW WINDOW OF THE DAYS NOW WINDOW OF THE DAYS NOW WINDOW.	148
9.6.		
		152
12 25		158
9.8.	Conclusions	164
	PART V	
	PHENOMENOLOGICAL THEORIES OF PHASE TRANSITIONS	
LAN	DAU'S CLASSIC THEORY OF EXPONENTS	167
10.1.	Expansions about the critical point	167
		168
10.3.	Critical-point predictions of the Landau theory	170
10.4.	Critique of the Landau theory	172
		175
	#2F = 16	176
		181
		182
Carrier Co.		
		185
SCAT		191
8 5		191
		194
		101
12.0.		197
12.4.		199
		255 (SASS)
	PART VI	
\mathbf{D}	YNAMIC ASPECTS OF CRITICAL PHENOMENA	
INTI	RODUCTION TO DYNAMIC CRITICAL	
		202
		203
13.2.	Time-dependent correlation functions and the dynamic structure factor $\mathcal{S}(\mathbf{q}, \boldsymbol{\omega})$	204
	RESUAP 9.1. 9.2. 9.3. 9.4. 9.5. 9.6. 9.7. 9.8. 10.1. 10.2. 10.3. 10.4. SCAI 11.1. 11.2. 11.3. 11.4. SCAI 12.1. 12.2. 12.3. 12.4.	model in a magnetic field RESULTS OBTAINED FROM MODEL SYSTEMS BY APPROXIMATION METHODS 9.1. Successive approximation concept 9.2. Series expansion methods 9.3. Calculation of the coefficients in the high-temperature expansion of the partition function 9.4. Calculation of the coefficients in the high-temperature expansion of the two-spin correlation function 9.5. Physical interpretation of the terms in the high-temperature expansion of the correlation function 9.6. Extrapolation procedures for estimating the limiting behaviour of a power series from the behaviour of its first few terms 9.7. Padé approximants and transformation methods 9.8. Conclusions PART V PHENOMENOLOGICAL THEORIES OF PHASE TRANSITIONS LANDAU'S CLASSIC THEORY OF EXPONENTS 10.1. Expansions about the critical point 10.2. Assumptions of the Landau theory 10.3. Critical-point predictions of the Landau theory SCALING LAW HYPOTHESIS FOR THERMODYNAMIC FUNCTIONS 11.1. Homogeneous functions of one or more variables 11.2. Static scaling hypothesis 11.3. Predicted relations among the critical-point exponents 11.4. Magnetic equation of state: scaled magnetization and scaled magnetic field SCALING OF THE STATIC CORRELATION FUNCTIONS 12.1. The Kadanoff construction 12.2. Application to the pair correlation function 12.3. Alternative methods of obtaining the correlation function scaling relations PART VI DYNAMIC ASPECTS OF CRITICAL PHENOMENA INTRODUCTION TO DYNAMIC CRITICAL PHENOMENA IN FLUID SYSTEMS 13.1. Critical-point exponents for transport coefficients 13.2. Time-dependent correlation functions and the dynamic structure

	10.0.	scattering experiments	001
	13.4.	Predictions of hydrodynamics for the spectrum of the scattered	205
	10.4.	radiation	210
	13.5.	Predictions of hydrodynamics near the critical point	214
*	10.0.	1 rodicololis of fly drody flatines float offe critical point	214
14.	MEA	SUREMENTS OF THE DYNAMIC STRUCTURE	
	$\mathbf{F}\mathbf{A}$	CTOR FOR FLUID SYSTEMS	217
	14.1.	Time-dependent density fluctuations	217
		Optical mixing spectroscopy	218
	14.3.	Measurements of the Rayleigh linewidth	219
	14.4.	Corrections to the hydrodynamic theory of the Rayleigh linewidth	225
	14.5.	Measurements of the Brillouin peak: velocity and attenuation of	
	×	hypersonic sound waves	228
15.	DYN	AMIC SCALING LAWS AND THE MODE-MODE	
		UPLING APPROXIMATION	233
		Dynamic scaling hypothesis	233
		Predictions of the restricted dynamic scaling hypothesis for	
		fluid systems	236
	15.3.	Predictions of extended dynamic scaling for fluid systems	238
	15.4.	Evidence supporting the dynamic scaling hypothesis provided by	
		magnetic systems	240
	15.5.	Spirit of the mode-mode coupling approach	246
	15.6.	Predictions of the mode-mode coupling approximation	249
	15.7.	Application of the mode-mode coupling approach to the inter-	
		pretation of experimental results on fluids	254
	15.8.	Applications of the mode-mode coupling approach to other	
		systems	259
	APPE	NDIX A. The lattice-gas model of a fluid system	260
		NDIX B. Exact solution of the zero-field Ising model for a two-	
	dim	ensional lattice	265
	APPE	NDIX C. Geometric interpretation of the static scaling hypothe-	
	sis f	or thermodynamic potentials	272
	A TOTOTO	NIDIX D Wha damente dans forton in the bandardamente	
		NDIX D. The dynamic structure factor in the hydrodynamic	275
	limi	U .	210
	APPE	NDIX E. Model systems useful in the study of time-dependent	
	coor	perative phenomena: the Glauber model	280
	A DDT	NDIX F. Two-dimensional ferroelectric and antiferroelectric	
	mod		287
	шоа	.OIS	201
	BIBLI	IOGRAPHY	290
	A TIME		301
	AUIH	OR INDEX	OUT
	SUBJ	ECT INDEX	305